Skip to main content

Advertisement

Log in

Ricinus communis as an Element Biomonitor of Atmospheric Pollution in Urban Areas

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Leaves and fruits of Ricinus communis (castor oil plant) were studied as potential biomonitors of atmospheric pollution in urban areas. The concentrations of Al, As, Cd, Cr, Cu, Hg, Mn, Ni, Pb, and Zn were analyzed in samples collected in the city of Catania (Italy) and compared with a pristine area. This study showed that the fruits of R. communis act as better biomonitors of element concentrations in the atmosphere as compared to the leaves. In particular, this pattern was evident for Cu, Pb, and Zn, typical atmospheric pollutants. Fruits proved especially sensitive to Pb accumulation; thus, all products derived from them, such as castor oil and biofuels, should be obtained in places where the exposure to Pb is low to avoid potential contamination. The plant R. communis seems a promising species as a biomonitor of atmospheric pollution, and given its wide distribution, may be used for large-scale networks of biomonitoring.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Adamo, P., Giordano, S., Naimo, D., & Bargagli, R. (2008). Geochemical properties of airborne particulate matter (PM10) collected by automatic device and biomonitors in a Mediterranean urban environment. Atmospheric Environment, 42, 346–357.

    Article  CAS  Google Scholar 

  • Al-Alawi, M. M., & Mandiwana, K. L. (2007). The use of Aleppo pine needles as bio-monitor of heavy metals in the atmosphere. Journal of Hazardous Materials, 148, 43–46.

    Article  CAS  Google Scholar 

  • Alfani, A., Maisto, G., Iovieno, P., Rutigliano, F. A., & Bartoli, G. (1996). Leaf contamination by atmospheric pollutants assessed by elemental analysis of leaf tissue, leaf surface deposit and soil. Journal of Plant Physiology, 148, 243–248.

    Article  CAS  Google Scholar 

  • Al-Khashman, O. A., & Shawabkeh, R. (2006). Metal distribution in soils around the cement factory in southern Jordan. Environmental Pollution, 140, 387–394.

    Article  CAS  Google Scholar 

  • Al-Khashman, O. A., Al-Muhtaseb, A. H., & Ibrahim, K. A. (2011). Dale palm (Phoenix dactylifera L.) leaves as biomonitors of atmospheric metal pollution in arid and semi-arid environments. Environmental Pollution, 159, 1635–1640.

    Article  CAS  Google Scholar 

  • Al-Khlaifat, A. L., & Al-Khashman, O. A. (2007). Atmospheric heavy metal pollution in Aqaba city, Jordan, using Phoenix dactylifera L. leaves. Atmospheric Environment, 41, 8891–8897.

    Article  CAS  Google Scholar 

  • Aničić, M., Spasić, T., Tomašević, M., Rajšić, S., & Tasić, M. (2011). Trace elements accumulation and temporal trends in leaves of urban deciduous trees (Aesculus hippocastanum and Tilia spp.). Ecological Indicators, 11, 824–830.

    Article  Google Scholar 

  • Bargagli, R. (1998). Trace elements in terrestrial plants. An ecophysiological approach to biomonitoring and biorecovery. Berlin: Springer.

    Google Scholar 

  • Bargagli, R., Monaci, F., Borghini, F., Bravi, F., & Agnorelli, C. (2002). Mosses and lichens as biomonitors of trace metals. A comparison study on Hypnum cupressiforme and Parmelia caperata in a former mining district in Italy. Environmental Pollution, 116, 279–287.

    Article  CAS  Google Scholar 

  • Baycu, G., Tolunay, D., Ozden, H., & Sureyya, G. (2006). Ecophysiological and seasonal variations in Cd, Pb, Zn and Ni concentrations in the leaves of urban deciduous trees in Istanbul. Environmental Pollution, 143, 545–554.

    Article  CAS  Google Scholar 

  • Bonanno, G. (2012). Arundo donax as a potential biomonitor of trace element contamination in water and sediment. Ecotoxicology and Environmental Safety, 80, 20–27.

    Article  CAS  Google Scholar 

  • Çelik, A., Kartal, A. A., Akdoğan, A., & Kaska, Y. (2005). Determination of heavy metal pollution in Denizli (Turkey) by using Robinia pseudo-acacia L. Environment International, 31, 105–112.

    Article  Google Scholar 

  • Chaudhry, T. M., Hayes, W. J., Khan, A. G., & Khoo, C. S. (1998). Phytoremediation—focusing on accumulator plants that remediate metal-contaminated soils. Australasian Journal of Ecotoxicology, 4, 37–51.

    CAS  Google Scholar 

  • Cheng, H., & Hu, Y. (2010). Lead (Pb) isotopic fingerprinting and its applications in lead pollution studies. A review. Environmental Pollution, 158, 1134–1146.

    Article  CAS  Google Scholar 

  • Clemens, S., Plamgren, M. G., & Kramer, U. (2002). A long way ahead: understanding and engineering plant metal accumulation. Trends in Plant Science, 7(7), 309–315.

    Article  CAS  Google Scholar 

  • De Bruin, M. (1990). Applying biomonitors and neutron activation analysis in studies of heavy metal air pollution. IAEA Bulletin, 4, 22–27.

    Google Scholar 

  • De Temmerman, L., Bell, J. N. B., Garrec, J. P., Klumpp, A., Krause, G. H. M., & Tonneijck, A. E. G. (2004). Biomonitoring of air pollution with plants—considerations for the future. In A. Klumpp, W. Ansel, & G. Klumpp (Eds.), Urban air pollution, bioindication and environmental awareness (pp. 337–373). Göttingen: Cuvillier Verlag.

    Google Scholar 

  • Directive 107/2004/EC of the European Parliament and of the Council relating to arsenic, cadmium, mercury, nickel and polycyclic aromatic hydrocarbons in ambient air. http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2005:023:0003:0016:EN:PDF.

  • Divrikli, V., Soylak, M., Elic, L., & Dogan, M. (2003). Trace heavy metal levels in street dust samples from Yazgat city center, Turkey. Journal of Trace and Microprobe Techniques, 21, 351–361.

    Article  CAS  Google Scholar 

  • Figueiredo, A. M. G., Nogueira, C. A., Saiki, M., Milian, F. M., & Domingos, M. (2007). Assessment of atmospheric metallic pollution in the metropolitan region of São Paulo, Brazil, employing Tillandsia usneoides L. as biomonitor. Environmental Pollution, 145, 279–292.

    Article  CAS  Google Scholar 

  • Gratani, L., Crescente, M. F., & Varone, L. (2008). Long-term monitoring of metal pollution by urban trees. Atmospheric Environment, 42, 8273–8277.

    Article  CAS  Google Scholar 

  • Guzmán-Morales, J., Morton-Bermea, O., Hernández-Álvarez, E., Rodríguez-Salazar, M., García-Arreola, M. E., & Tapia-Cruz, V. (2011). Assessment of atmospheric metal pollution in the urban area of Mexico City, using Ficus benjamina as biomonitor. Bulletin of Environmetal Contamination & Toxicology, 86, 495–500.

    Article  Google Scholar 

  • Harrison, R. M., Tilling, R., Callen Romero, M. S., Harrad, S., & Jarvis, K. (2003). A study of trace metals and polycyclic aromatic hydrocarbons in the roadside environment. Atmospheric Environment, 37, 2391–2402.

    Article  CAS  Google Scholar 

  • Hovmand, M. F., Nielsen, S. P., & Johnsen, I. (2009). Root uptake of lead by Norway spruce grown on 210Pb spiked soils. Environmental Pollution, 157, 404–409.

    Article  CAS  Google Scholar 

  • Hsu, S.-C., Liu, S. C., Jeng, W.-L., Chou, C. C. K., Hsu, R.-T., Huang, Y.-T., et al. (2006). Lead isotope ratios in ambient aerosols from Taipei, Taiwan: identifying long-range transport of airborne Pb from the Yangtze Delta. Atmospheric Environment, 40, 5393–5404.

    Article  CAS  Google Scholar 

  • Kabata-Pendias, A., & Mukherjee, A. B. (2007). Trace elements from soil to human. Berlin: Springer.

    Book  Google Scholar 

  • Komárek, M., Ettler, V., Chrastný, V., & Mihaljević, M. (2008). Lead isotopes in environmental sciences: a review. Environment International, 34, 562–577.

    Article  Google Scholar 

  • Larcher, W. (2003). Physiological plant ecology (4th ed.). Berlin: Springer.

    Book  Google Scholar 

  • Lau, O. W., & Luk, S. F. (2001). Leaves of Bauhinia blakeana as indicators of atmospheric pollution in Hong Kong. Atmospheric Environment, 35, 3113–3120.

    Article  CAS  Google Scholar 

  • Markert, B. (1993). Plants as biomonitors. Indicators for heavy metals in the terrestrial environment. Weinheim: Wiley-VCH Verlag GmbH.

    Google Scholar 

  • Markert, B. (1996). Instrumental element and multi-element analysis of plant samples. New York: WileySons Ltd.

    Google Scholar 

  • Mingorance, M. D., & Oliva, S. R. (2006). Heavy metals content in N. oleander leaves as urban pollution assessment. Environmental Monitoring and Assessment, 119, 57–68.

    Article  CAS  Google Scholar 

  • Moraes, R. M., Klumpp, A., Furlan, C. M., Klumpp, G., Domingos, M., Rinaldi, M. C. S., et al. (2002). Tropical fruit trees as bioindicators of industrial air pollution in southeast Brazil. Environment International, 28, 367–374.

    Article  CAS  Google Scholar 

  • Moreno, E., Sagnotti, L., Dinarès-Turell, J., Winkler, A., & Cascella, A. (2003). Biomonitoring of traffic air pollution in Rome using magnetic properties of tree leaves. Atmospheric Environment, 37, 2967–2977.

    Article  CAS  Google Scholar 

  • Nowak, D. J. (2004). Assessing environmental functions and values of veteran tree. In G. Nicolotti & Gonthier (Eds.), Processing of the international congress on the protecion and exploitation of veteran trees (pp. 45–49). Torino: Region Piemonte and University of Torino.

    Google Scholar 

  • Olowoyo, J. O., van Heerden, E., Fischer, J. L., & Baker, C. (2010). Trace metals in soil and leaves of Jacaranda mimosifolia in Tshwane area, South Africa. Atmospheric Environment, 44, 1826–1830.

    Article  CAS  Google Scholar 

  • Pyatt, F. B. (2001). Copper and lead bioaccumulation by Acacia retinoides and Eucalyptus torquata in sites contaminated as a consequence of extensive ancient mining activities in Cyprus. Ecotoxicology and Environmental Safety, 50, 60–64.

    Article  CAS  Google Scholar 

  • Rajkumar, M., & Freitas, H. (2008). Influence of metal resistant-plant growth-promoting bacteria on the growth of Ricinus communis in soil contaminated with heavy metals. Chemosphere, 71, 834–842.

    Article  CAS  Google Scholar 

  • Richardson, D. H. S., Shore, M., Hartree, R., & Richardson, R. M. (1995). The use of X-ray fluorescence spectrometry for the analysis of plants, especially lichens, employed in biological monitoring. The Science of the Total Environment, 176, 97–105.

    Article  CAS  Google Scholar 

  • Riveros-Rosas, H., Pfeifer, G. D., Lynam, D. R., Pedroza, J. L., Julian-Sanchez, A., Canales, O., et al. (1997). Personal exposure to elements in Mexico City air. Science of the Total Environment, 198, 79–96.

    Article  CAS  Google Scholar 

  • Rodriguez, J. H., Pignata, M. L., Fangmeier, A., & Klumpp, A. (2010). Accumulation of polycyclic aromatic hydrocarbons and trace elements in the bioindicator plants Tillandsia capillaris and Lolium multiflorum exposed at PM10 monitoring stations in Stuttgart (Germany). Chemosphere, 80, 208–215.

    Article  CAS  Google Scholar 

  • Roger, P., & Rix, M. (1999). Annuals and biennials. London: Macmillan.

    Google Scholar 

  • Rossini Oliva, S., & Fernández Espinosa, A. J. (2007). Monitoring of heavy metals in topsoils, atmospheric particles and plant leaves to identify possible contamination sources. Microchemical Journal, 86, 131–139.

    Article  CAS  Google Scholar 

  • Rossini Oliva, S., & Rautio, P. (2005). Spatiotemporal patterns in foliar element concentrations in Ficus microcarpa L. f. growing in an urban area: implications for biomonitoring studies. Ecological Indicators, 5, 97–107.

    Article  Google Scholar 

  • Rühling, A., & Tyler, G. (1968). An ecological approach to the lead problem. Botaniska Notiser, 122, 248–342.

    Google Scholar 

  • Shuman, L. M. (1994). Mineral nutrition. In R. E. Wilkinson (Ed.), Plant-environment interactions (pp. 149–182). New York: Marcel Dekker, Inc.

    Google Scholar 

  • Smodiš, B., Pignata, M. L., Saiki, M., Cortés, E., Bangfa, N., Markert, B., et al. (2004). Validation and application of plants as biomonitors of trace element atmospheric pollution – a co-ordinated effort in 14 countries. Journal of Atmospheric Chemistry, 49, 3–13.

    Article  Google Scholar 

  • Sucharova, J., Suchara, I., Reimann, C., Boyd, R., Filzmoser, P., & Englmaier, P. (2011). Spatial distribution of lead and lead isotopes in soil B-horizon, forest-floor humus, grass (Avenella flexuosa) and spruce (Picea abies) needles across the Czech republic. Applied Geochemistry, 26, 1205–1214.

    Article  CAS  Google Scholar 

  • Tomašević, M., Rajšić, S., Đordević, D., Tasić, M., Krstić, J., & Novaković, V. (2004). Heavy metals accumulation in tree leaves from urban areas. Environmental Chemistry Letters, 2, 151–154.

    Article  Google Scholar 

  • Tomašević, M., Vukmirović, Z., Rajšić, S., Tasić, M., & Stevanović, B. (2008). Contribution to biomonitoring of some trace metals by deciduous tree leaves in urban areas. Environmental Monitoring and Assessment, 137, 393–401.

    Article  Google Scholar 

  • Tomašević, M., Antanasijević, D., Aničić, M., Deljanin, I., Perić-Grujić, A., & Ristić, M. (2013). Lead concentrations and isotope ratios in urban tree leaves. Ecological Indicators, 24, 504–509.

    Article  Google Scholar 

  • Urbat, M., Lehndorff, E., & Schwark, L. (2004). Biomonitoring of air quality in the Cologne Conurbation using pine needles as a passive sampler – part I: magnetic properties. Atmospheric Environment, 38, 3781–3792.

    Article  CAS  Google Scholar 

  • US Environmental Protection Agency (EPA) (1996). Publication 9345.0-12FSIEPA 540/F-95/038 PB95-963324, Intermittent Bulletin 3(2).

  • US Environmental Protection Agency (EPA) (2006). Lead Human Exposure and Health Risk Assessments and Ecological Risk Assessment for Selected Areas, Pilot Phase, External Review Draft Technical Report.

  • Van der Gon, H. D., & Appelman, W. (2009). Lead emissions from road transport in Europe. Science of the Total Environment, 407, 5367–5372.

    Article  Google Scholar 

  • Ward, N. I. (1990). Multielement contamination of British motorway environments. Science of the Total Environment, 93, 393–401.

    Article  CAS  Google Scholar 

  • World Health Organization (WHO) (2000). Air hygiene report no. 10. Biomonitoring of Air quality using plants, Geneva.

  • Zechmeister, H. G., Dullinger, S., Hohenwallner, D., Riss, A., Hanus-Illnar, A., & Scharf, S. (2006). Pilot study on road traffic emissions (PAHs, heavy metals) measured by using mosses in a tunnel experiment in Vienna, Austria. Environmental Science & Pollution Research, 13, 398–405.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The author wishes to thank all the people involved in the sampling, and that provided scientific support. This study was partially financed by the Italian Ministry of University and Scientific Research (PRA no. 20104001098/2010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Bonanno.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bonanno, G. Ricinus communis as an Element Biomonitor of Atmospheric Pollution in Urban Areas. Water Air Soil Pollut 225, 1852 (2014). https://doi.org/10.1007/s11270-013-1852-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-013-1852-2

Keywords

Navigation