Skip to main content
Log in

Effects of Emissions from an Aluminium Smelter in a Tree Tropical Species Sensitive to Fluoride

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Fluoride is among the most phytotoxic atmospheric pollutants, commonly linked to the appearance of lesions in susceptible plants around emitting sources. In order to assess the effects of fluoride on leaves of Spondias dulcis Parkinson (Anacardiaceae), plants were examined 78 km (non-polluted area) and 0.78 km (polluted area) from an aluminium smelter. The level of fluoride increased with the exposure time of the plants in the polluted area. On the third day of exposure in the polluted area, necroses with typical colouration were observed. Micromorphological damage began at the abaxial epidermis, mainly associated with the stomata. Starch grain accumulation was more pronounced in the midrib. The cell membranes and chloroplasts were greatly affected by the pollutant. We observed accumulation of phenolic compounds and electron-dense material at the boundaries of the ending veinlets. The microscopic events described precede the appearance of symptoms and are therefore of prognostic value in predicting injury by fluoride and will be useful as biomarkers. The high sensitivity of S. dulcis to fluoride and the specificity of the symptoms confirm, for the first time, in an experiment of active biomonitoring, the potential of this species as a bioindicator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

E1:

Experiment one

E2:

Experiment two

DM:

Dry matter

DE:

Day of exposure

References

  • Abdallah, F. B., Elloumi, N., Mezghani, O., Boukhris, M., & Garrec, J. (2006). Survival strategies of pomegranate and almond trees in a fluoride polluted area. Comptes Rendus Biologies, 329(3), 200–207.

    Article  Google Scholar 

  • Anttonen, S. (1992). Changes in lipids of Pinus sylvestris needles exposed to industrial air pollution. Annales Botanici Fennici, 29(2), 89–99.

    CAS  Google Scholar 

  • Assis, C. M., Silveira, I. L., Anizelli, R. C. M. (2003). Automonitoramento da qualidade do ar em Ouro Preto/MG. In: Congresso Interamericano de Qualidade do Ar, 3., Canoas. Anais Porto Alegre, AIDIS, ABES, 2003. 1 CD-ROM

  • Barthlott, W. (1981). Epidermal and seed surface characters of plants: systematic applicability and some evolutionary aspects. Nordic Journal of Botany, 1(3), 345–355.

    Article  Google Scholar 

  • Briggs, C. L., Morris, E. C., & Ashford, A. E. (2005). Investigations into seed dormancy in Grevillea linearifolia, G. buxifolia and G. Sericea: anatomy and histochemistry of the seed coat. Annals of Botany, 96(6), 965–980.

    Article  CAS  Google Scholar 

  • Chaves, A. L. F., Silva, E. A. M., Azevedo, A. A., Cano, M. A. O., & Matsuoka, K. (2002). Ação do flúor dissolvido em chuva simulada sobre a estrutura foliar de Panicum maximum Jacq. (colonião) e Chloris gayana Kunth. (capim-Rhodes) – Poaceae. Acta Botânica Brasílica, 16(1), 395–406.

    Article  Google Scholar 

  • Coulter, C. T., Pack, M. R., & Sulzbach, C. W. (1985). An evaluation of the dose-response relationship of fluoride injury to gladiolus. Atmospheric Environment, 19(6), 1001–1007.

    Article  CAS  Google Scholar 

  • Divan Junior, A. M., Oliva, M. A., Martinez, C. A., & Cambraia, J. (2007). Effects of fluoride emissions on two tropical grasses: Chloris gayana and Panicum maximum cv. Colonião. Ecotoxicology Environmental Safety, 67(2), 247–253.

    Article  CAS  Google Scholar 

  • Divan Junior, A. M., Oliva, M. A., & Ferreira, F. A. (2008). Dispersal pattern of airborne emissions from an aluminium smelter in Ouro Preto, Brazil, as expressed by foliar fluoride accumulation in eight plant species. Ecological Indicators, 8(5), 454–461.

    Article  Google Scholar 

  • Eleftheriou, E. P., & Tsekos, I. (1991). Fluoride effects on leaf cell ultrastructure of olive trees growing in the vicinity of aluminium factory of Greece. Trees, 5(1), 83–98.

    Google Scholar 

  • EU (2001). European Union Risk Assessment Report: Hydrogen Fluoride, CAS-No.: 7664-39-3. 1st Priority List, vol. 8, 134 pp

  • Euclydes, R. F. (1983). Sistema de Análises Estatísticas e Genéticas da UFV (SAEG) – Manual. Viçosa, Minas Gerais: CPD/UFV, Divisão de Pesquisas e Desenvolvimento, 74p

  • Façanha, A. R., & de Meis, L. (1995). Inhibition of maize root H + -ATPase by fluoride and fluoroaluminate complexes. Plant Physiology, 108(1), 241–246.

    Google Scholar 

  • Fornasiero, R. B. (2001). Phytotoxic effects of fluorides. Plant Science, 161(5), 979–985.

    Article  CAS  Google Scholar 

  • Fornasiero, R. B. (2003). Fluorides effects on Hypericum perforatum plants: first field observations. Plant Science, 165(3), 507–513.

    Article  CAS  Google Scholar 

  • Fortes, C., Duarte, A. P., Matsuoka, S., Hoffmann, H. P., & Lavorenti, N. A. (2003). Toxicidade de flúor em cultivares de milho em área próxima a uma indústria de cerâmica, Araras (SP). Bragantia, 62(2), 275–281.

    Article  CAS  Google Scholar 

  • Franzaring, J., Klumpp, A., & Fangmeier, A. (2007). Active biomonitoring of airborne fluoride near an HF producing factory using standardised grass cultures. Atmospheric Environment, 41(23), 4828–4840.

    Article  CAS  Google Scholar 

  • Garcia-Ciudad, A., Garcia-Criado, B., & Pontón-San Emeterio, C. (1985). Determination of fluoride in plant samples by a potentiometric method and near-infrared reflectance spectroscopy. Communications in Soil Science and Plant Analysis, 16(10), 1107–1122.

    Article  CAS  Google Scholar 

  • Günthardt-Goerg, M. S., & Vollenweider, P. (2007). Linking stress with macroscopic and microscopic leaf response in trees: new diagnostic perspectives. Environmental Pollution, 147(3), 467–488.

    Article  Google Scholar 

  • Hoagland, D. R., & Arnon, D. I. (1950). The water-culture method for growing plants without soil. Berkeley, CA: California Agricultural Experiment Station.

    Google Scholar 

  • Holopainen, T. H., Anttonen, S., Wulff, A., Palomäki, V., & Kärenlampi, L. (1992). Comparative evaluation of effects of gaseous pollutants, acid deposition and mineral deficiencies: structural changes in cells of forest plants. Agriculture, Ecosystems & Environment, 42(3–4), 341–398.

    Google Scholar 

  • Johansen, D. A. (1940). Plant microtechnique (p. 523). New York: McGraw Hill.

    Google Scholar 

  • Kaiser, E. (1880). Verfahren zur Herstellung einer tadellosen glycerin-gelatine. Botanische Centralbl, 180, 25–26.

    Google Scholar 

  • Karnovsky, M. J. (1965). A formaldehyde-glutaraldehyde fixative of high osmolarity for use in electron microscopy. Journal of Cell Biology, 27(1), 137A–138A.

    Google Scholar 

  • Klumpp, G., Klumpp, A., Domingos, M., & Guderian, R. (1995). Hemerocallis as bioindicator of fluoride pollution in tropical countries. Environmental Monitoring and Assessment, 35(1), 27–42.

    CAS  Google Scholar 

  • Klumpp, A., Ansel, W., Klumpp, G., & Fomin, A. (2001). Um novo conceito de monitoramento e comunicação ambiental: a rede européia para avaliação da qualidade do ar usando plantas bioindicadoras (EuroBionet). Brazilian Journal of Botany, 24(4), 511–518.

    Article  Google Scholar 

  • Larsen, S., & Widdowson, A. E. (1971). Soil fluorine. Journal of Soil Science, 22(2), 210–221.

    Article  CAS  Google Scholar 

  • Mesquita, G. L., Tanaka, F. A. O., Cantarella, H., & Mattos, D. (2011). Atmospheric absorption of fluoride by cultivated species. Leaf structural changes and plant growth. Water, Air & Soil Pollution, 219(1–4), 143–156.

    Article  CAS  Google Scholar 

  • Mezghani, I., Elloumi, N., Abdallah, F. B., Chaieb, M., & Boukhris, M. (2005). Fluoride accumulation by vegetation in the vicinity of a phosphate fertilizer plant in Tunisia. Fluoride, 38(1), 69–75.

    CAS  Google Scholar 

  • Miller, G. W. (1993). The effect of fluoride on higher plants. Fluoride, 26(1), 3–22.

    CAS  Google Scholar 

  • MOE (2005). Ontario Air Standards For Hydrogen Fluoride. Standards Development Branch Ontario Ministry of the Environment, 112 pp

  • O’Brien, P. P., & McCully, M. E. (1981). The study of plants structure principles and selected methods (p. 45p). Melbourne, Australia: Termarcarphi Pty. Ltda.

    Google Scholar 

  • Oliva, M. A., & Figueiredo, J. G. (2005). Gramíneas bioindicadoras da presença de flúor em regiões tropicais. Brazilian Journal of Botany, 28(2), 389–397.

    Article  CAS  Google Scholar 

  • Rakowski, K. J. (1997). Hydrogen fluoride effects on plasma membrane composition and ATPase activity in needles of white pine (Pinus strobus) seedlings pretreated with 12 h photoperiod. Tree, 11(4), 248–253.

    Google Scholar 

  • Rakowski, K. J., Zwiazek, J. J., & Sumner, M. J. (1995). Hydrogen fluoride effects on plasma membrane composition, ATPase activity and cell structure in needles of eastern white pine (Pinus strobus) seedlings. Tree, 9(4), 190–194.

    Article  Google Scholar 

  • Reig-Arminaña, J., Calatayud, V., Cerveró, J., García-Breijo, F. J., Ibars, A., & Sanz, M. J. (2004). Effects of ozone on the foliar histology of the mastic plant (Pistacia lentiscus L.). Environmental Pollution, 132(2), 321–331.

    Article  Google Scholar 

  • Rennenberg, H., Herschbach, C., & Polle, A. (1996). Consequences of air pollution on shoot–root interactions. Journal of Plant Physiology, 148(3–4), 296–301.

    Article  CAS  Google Scholar 

  • Reynolds, E. S. (1963). The use of lead citrate at high pH as an eletron-opaque stain in electronmicroscopy. Journal of Cell Biology, 17(1), 208–212.

    Article  CAS  Google Scholar 

  • Sanders, G.E., Skärby, L., Ashmore, M.R., & Fuhrer, J. (1995). Establishing critical levels for the effects of air pollution on vegetation. Water, Air and Soil Pollution, 85(1), 189–200.

    Google Scholar 

  • Sant’Anna-Santos, B. F., Silva, L. C., Azevedo, A. A., & Aguiar, R. (2006a). Effects of simulated acid rain on leaf anatomy and micromorphology of Genipa americana L. (Rubiaceae). Brazilian Archives of Biology and Technology, 49(2), 313–321.

    Article  Google Scholar 

  • Sant’Anna-Santos, B. F., Silva, L. C., Azevedo, A. A., Araújo, J. M., Alves, E. F., Silva, E. A. M., et al. (2006b). Effects of simulated acid rain on the foliar micromorphology and anatomy of tree tropical species. Environmental and Experimental Botany, 58(1–3), 158–168.

    Article  Google Scholar 

  • Sant’Anna-Santos, B. F., Thadeo, M., Meira, R. M. S. A., & Ascensão, L. (2006c). Anatomia e histoquímica das estruturas secretoras do caule de Spondias dulcis Forst. F. (Anacardiaceae). Revista Árvore, 30(3), 481–489.

    Article  Google Scholar 

  • Sant’Anna-Santos, B. F., Duque-Brasil, R., Azevedo, A. A., Silveira, A. S., Araújo, J. M., & Aguiar, R. (2007). Utilização de parâmetros morfoanatômicos na análise da fitotoxidez do flúor em folhas de Magnolia ovata (A. St.-Hil.) Spreng. (Magnoliaceae). Revista Árvore, 31(4), 761–771.

    Article  Google Scholar 

  • Sant’Anna-Santos, B. F., Azevedo, A. A., Silva, L. C., & Oliva, M. A. (2012). Diagnostic and prognostic characteristics of phytotoxicity caused by fluoride on Spondias dulcis Forst. F. (Anacardiaceae). Anais da Academia Brasileira de Ciências, 84(3), 689–702.

    Article  Google Scholar 

  • Schmitt, U., & Ruetze, M. (1990). Structural changes in spruce and fir needles. Environmental Pollution, 68(3–4), 345–348.

    Article  CAS  Google Scholar 

  • Silva, L. C., Azevedo, A. A., Silva, E. A. M., & Oliva, M. A. (2000). Flúor em chuva simulada: sintomatologia e efeitos sobre a estrutura foliar e o crescimento de plantas arbóreas. Brazilian Journal of Botany, 23(1), 385–393.

    Article  Google Scholar 

  • Soda, C., Bussotti, F., Grossoni, P., Barnes, J., Mori, B., & Tani, C. (2000). Impacts of urban levels of ozone on Pinus halepensis foliage. Environmental and Experimental Botany, 44(2000), 69–82.

    Article  CAS  Google Scholar 

  • Soikkeli, S. (1981). Comparison of cytological injuries in conifer needles from several polluted industrial environments in Finland. Annales Botanici Fennici, 18(1–4), 47–61.

    CAS  Google Scholar 

  • Soikkeli, S., & Tuovinen, T. (1979). Damage in mesophyll ultrastructure of needles of Norway spruce in two industrial environments in central Finland. Annales Botanici Fennici, 16(1–4), 50–64.

    Google Scholar 

  • Souza, F. X., Sousa, F. H. L., & Melo, F. I. O. (1998). Aspectos morfológicos de endocarpos de cajarana (Spondias cytherea sonn. - Anacardiaceae). Revista Brasileira de Sementes, 20(2), 141–146.

    Google Scholar 

  • Spurr, A. R. (1969). A low-viscosity epoxy resin embedding medium for electron microscopy. Journal of Ultrastructure Research, 26(1–2), 31–43.

    Article  CAS  Google Scholar 

  • Strehl, T., & Arndt, U. (1989). Alterações apresentadas por Tillandsia aeranthos e T. recurvata (Bromeliaceae) expostas ao HF e SO2. Iheringia, 39(1), 3–17.

    Google Scholar 

  • Thomson, W. W. (1975). Effects of air pollutants on plant ultrastructure. In J. B. Mudd & T. T. Kozlowski (Eds.), Responses of plants to air pollution (pp. 179–194). New York: Academic.

    Google Scholar 

  • Treshow, M., & Anderson, F. K. (1989). Plant stress from air pollution (p. 283pp). Chichester: John Wiley.

    Google Scholar 

  • Vaughn, K., & Duke, S. O. (1984). Function of polyphenol oxidase in higher plants. Physiologia Plantarum, 60(1), 106–112.

    Article  CAS  Google Scholar 

  • Vike, E. (1999). Air-pollutant dispersal patterns and vegetation damage in the vicinity of three aluminium smelters in Norway. Science of the Total Environment, 236(1–3), 75–90.

    Article  CAS  Google Scholar 

  • Vollenweider, P., Günthardt-Goerg, M. S. (2006). Erratum to “Diagnosis of abiotic and biotic stress factors using the visible symptoms in foliage” [Environ. Pollut. 137 (2005) 455–465]. Environmental Pollution, 140(3), 562–571

    Google Scholar 

  • Vollenweider, P., Ottiger, M., & Günthardt-Goerg, M. S. (2003). Validation of leaf ozone symptoms in natural vegetation using microscopical methods. Environmental Pollution, 124(1), 101–118.

    Article  CAS  Google Scholar 

  • Wei, L., & Miller, G. W. (1972). Effect of HF on the fine structure of mesophyll cells from Glycine max Merr. Fluoride, 5(2), 67–73.

    CAS  Google Scholar 

  • Weinstein, L. H., & Davison, A. W. (2004). Fluorides in the environment (p. 287). Effects on plants and animals. Wallingford: CABI Publishing.

    Google Scholar 

  • WHO, World Health Organization (2002). Fluoride. Environmental Health Criteria 227

  • Wulff, A., & Kärenlampi, L. (1996). Effects of long-term open-air exposure to fluoride, nitrogen compounds and SO2 on visible symptoms, pollutant accumulation and ultrastructure of Scots pine and Norway spruce seedlings. Trees, 10(3), 157–171.

    Google Scholar 

  • Zwiazek, J. J., & Shay, J. M. (1987). Fluoride- and drought-induced structural alterations of mesophyll and guard cells in cotyledons of jack pine (Pinus banksiana). Canadian Journal of Botany, 65(11), 2310–2317.

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank CAPES for a scholarship; the Nursery of Parque Estadual do Rio Doce-MG (NPERD) for supplying the plants; and the Laboratório de Anatomia Vegetal (Universidade Federal de Ouro Preto-UFOP), Núcleo de Microscopia e Microanálise (Universidade Federal de Viçosa-UFV) and Núcleo de Apoio à Pesquisa em Microscopia Eletrônica Aplicada à Pesquisa Agropecuária (Universidade de São Paulo-USP) for helping with the microscopy portion of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruno Francisco Sant’Anna-Santos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sant’Anna-Santos, B.F., Azevedo, A.A., Alves, T.G. et al. Effects of Emissions from an Aluminium Smelter in a Tree Tropical Species Sensitive to Fluoride. Water Air Soil Pollut 225, 1817 (2014). https://doi.org/10.1007/s11270-013-1817-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-013-1817-5

Keywords

Navigation