Skip to main content

Advertisement

Log in

Treatment of a Trichloroethylene Source Zone using Persulfate Activated by an Emplaced Nano-Pd–Fe0 Zone

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Recently, metal nanoparticles have attracted attention as promising peroxygen activators for the rapid and effective remediation of organic contaminants. In this work, a one-dimensional physical model experiment was designed to investigate the mobility of the metal nanoparticles in porous media and the potential use of metal nanoparticles as peroxygen activators for in situ treatment of source zones. We found that our synthesized nano-Pd–Fe0 particles were mobile in a non-geological porous medium and relatively immobile in a geological porous medium. In addition, we observed that iron-based bimetallic nanoparticles were able to remain in suspension in an ideal aqueous system much longer (>6 weeks) than iron-based monometallic nanoparticles (<1 h). To overcome the nano-Pd–Fe0 particle delivery issue in geological porous media, an activation zone approach was adopted. Nano-Pd–Fe0 particles were injected in order to create a zone to activate persulfate for the treatment of a trichloroethylene source zone. Trichloroethylene mass destruction was only 9 % higher in the nano-Pd–Fe0 activated persulfate system compared to the non-activated persulfate system as revealed by a short-duration chloride concentration spike in the effluent. In addition, the nano-Pd–Fe0 activation zone was rapidly deactivated after being exposed to persulfate as visually observed by a color change, indicating that the longevity of the activation zone is limited.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • APHA. (1989). Standard methods for the examination of water and wastewater. Washington: APHA.

    Google Scholar 

  • Al-Shamsi, M. A., & Thomson, N. R. (2013a). Treatment of organic compounds by activated persulfate using nano-scale zero valent iron. Industrial Engineering Chemistry Research., 52, 13564–13571.

    Article  CAS  Google Scholar 

  • Al-Shamsi, M. A., & Thomson, N. R. (2013b). Competition by aquifer materials in a bimetallic nanoparticle/persulfate system for the treatment of trichloroethylene. Environmental Science: Processes & Impacts, 15, 1964–1968.

    Article  CAS  Google Scholar 

  • Al-Shamsi, M. A., Thomson, N. R., & Forsey, S. P. (2013). Iron based bimetallic nanoparticles to activate peroxygens. Chemical Engineering Journal, 232, 555–563.

    Article  CAS  Google Scholar 

  • Armstrong, S., & Green, L. (2004). Chlorinated hydrocarbon solvents. Clinical Occupational Environmental Medicine, 4, 481–496.

    Article  Google Scholar 

  • ASTM-D6889–03. (2003). Standard practice for fast screening for volatile organic compounds in water using solid phase microextraction (SPME). West Conshohocken: ASTM.

    Google Scholar 

  • Bennett, P., He, F., Zhao, D., Aiken, B., & Feldman, L. (2010). In situ testing of metallic iron nanoparticle mobility and reactivity in a shallow granular aquifer. Journal of Contaminant Hydrology, 116, 34–46.

    Article  Google Scholar 

  • Cantrell, K. J., & Kaplan, D. I. (1997). Zero-valent iron colloid emplacement in sand columns. Journal of Environmental Engineering, 123, 499–505.

    Article  CAS  Google Scholar 

  • Choi, K., & Lee, W. (2012). Enhanced degradation of trichloroethylene in nano-scale zero-valent iron Fenton system with Cu(II). Journal of Hazardous materials, 211–212, 146–153.

    Article  Google Scholar 

  • Cuypers, H., Grotenhuis, T., Joziasse, J., & Rulkens, W. (2000). Rapid persulfate oxidation predicts PAH bioavailability in soils and sediments. Environmental Science and Technology, 34, 2057–2063.

    Article  CAS  Google Scholar 

  • Elliott, D. W., & Zhang, W. X. (2001). Field assessment of nanoscale bimetallic particles for groundwater treatment. Environmental Science and Technology, 35, 4922–4926.

    Article  CAS  Google Scholar 

  • Furukawa, Y., Kim, J. W., Watkins, J., & Wilkin, R. T. (2002). Formation of ferrihydrite and associated iron corrosion products in permeable reactive barriers of zero-valent iron. Environmental Science and Technology, 36, 5469–5475.

    Article  CAS  Google Scholar 

  • He, F., Zhao, D., & Paul, C. (2010). Field assessment of carboxymethyl cellulose stabilized iron nanoparticles for in situ destruction of chlorinated solvents in source zones. Water Research, 44, 2360–2370.

    Article  CAS  Google Scholar 

  • Huling, S. G., & Pivetz, B. E. (2006). Engineering issue paper: in-situ chemical oxidation. Washington: U.S. EPA.

    Google Scholar 

  • Jiemvarangkul, P., Zhang, W. X., & Lien, H. L. (2011). Enhanced transport of polyelectrolyte stabilized nanoscale zero-valent iron (nZVI) in porous media. Chemical Engineering Journal, 170, 482–491.

    Article  CAS  Google Scholar 

  • Kanel, S., Nepal, D., Manning, B., & Choi, H. (2007a). Transport of surface-modified iron nanoparticle in porous media and application to arsenic(III) remediation. Journal of Nanoparticle Research, 9, 725–735.

    Article  CAS  Google Scholar 

  • Kanel, S. R., Goswami, R. R., Clement, T. P., Barnett, M. O., & Zhao, D. (2007b). Two dimensional transport characteristics of surface stabilized zero-valent iron nanoparticles in porous media. Environmental Science & Technology, 42, 896–900.

    Article  Google Scholar 

  • Kester, J. E., & Clewell, H. J. (2004). The perils and promise of modern risk assessment: the example of trichloroethylene. Clinical Occupational Environmental Medicine, 4, 497–512.

    Article  Google Scholar 

  • Li, K., Stefan, M. I., & Crittenden, J. C. (2007). Trichloroethene degradation by UV/H2O2 advanced oxidation process: product study and kinetic modeling. Environmental Science and Technology, 41, 1696–1703.

    Article  CAS  Google Scholar 

  • Liang, C., Huang, C.-F., Mohanty, N., & Kurakalva, R. M. (2008a). A rapid spectrophotometric determination of persulfate anion in ISCO. Chemosphere, 73, 1540–1543.

    Article  CAS  Google Scholar 

  • Liang, C., & Lai, M. C. (2008). Trichloroethylene degradation by zero valent iron activated persulfate oxidation. Environmental Engineering Science, 25, 1071–1077.

    Article  CAS  Google Scholar 

  • Liang, C., Lee, I. L., Hsu, I. Y., Liang, C. P., & Lin, Y. L. (2008b). Persulfate oxidation of trichloroethylene with and without iron activation in porous media. Chemosphere, 70, 426–435.

    Article  CAS  Google Scholar 

  • Liang, C., Liang, C. P., & Chen, C. C. (2009). pH dependence of persulfate activation by EDTA/Fe(III) for degradation of trichloroethylene. Journal of Contaminant Hydrology, 106, 173–182.

    Article  CAS  Google Scholar 

  • Liang, C., Wang, Z. S., & Bruell, C. J. (2007). Influence of pH on persulfate oxidation of TCE at ambient temperatures. Chemosphere, 66, 106–113.

    Article  CAS  Google Scholar 

  • Liao, C. J., Chung, T. L., Chen, W. L., & Kuo, S. L. (2007). Treatment of pentachlorophenol-contaminated soil using nano-scale zero-valent iron with hydrogen peroxide. Journal of Molecular Catalysis A: Chemical, 265, 189–194.

    Article  CAS  Google Scholar 

  • Lin, Y.-H., Tseng, H.-H., Wey, M.-Y., & Lin, M.-D. (2010). Characteristics of two types of stabilized nano zero-valent iron and transport in porous media. Science of the Total Environment, 408, 2260–2267.

    Article  CAS  Google Scholar 

  • Norman, R. O. C., Storey, P. M., & West, P. R. (1970). Electron spin resonance studies. Part XXV. Reactions of the sulphate radical anion with organic compounds (pp. 1087–1095). Physical Organic: Journal of the Chemical Society B.

    Google Scholar 

  • NRC. (1999). Groundwater and soil cleanup: improving management of persistent contaminants. Washington: National Academy Press.

    Google Scholar 

  • O'Carroll, D., Sleep, B., Krol, M., Boparai, H., & Kocur, C. (2012). Nanoscale zero valent iron and bimetallic particles for contaminated site remediation. Advances in Water Resources, 51, 104–122.

    Article  Google Scholar 

  • Oh, S.-Y., Kang, S.-G., & Chiu, P. C. (2010). Degradation of 2,4-dinitrotoluene by persulfate activated with zero-valent iron. Science of the Total Environment, 408, 3464–3468.

    Article  CAS  Google Scholar 

  • Phenrat, T., Cihan, A., Kim, H. J., Mital, M., Illangasekare, T., & Lowry, G. V. (2010). Transport and deposition of polymer-modified Fe0 nanoparticles in 2-D heterogeneous porous media: effects of particle concentration, Fe0 content, and coatings. Environmental Science and Technology, 44, 9086–9093.

    Article  CAS  Google Scholar 

  • Phenrat, T., Kim, H.-J., Fagerlund, F., Illangasekare, T., Tilton, R. D., & Lowry, G. V. (2009). Particle size distribution, concentration, and magnetic attraction affect transport of polymer-modified Fe0 nanoparticles in sand columns. Environmental Science & Technology, 43, 5079–5085.

    Article  CAS  Google Scholar 

  • Pignatello, J. J., Liu, D., & Huston, P. (1999). Evidence for an additional oxidant in the photoassisted Fenton reaction. Environmental Science and Technology, 33, 1832–1839.

    Article  CAS  Google Scholar 

  • Qiang, Z., Ben, W., & Huang, C. P. (2008). Fenton process for degradation of selected chlorinated aliphatic hydrocarbons exemplified by trichloroethylene, 1,1-dichloroethylene and chloroform. Frontiers of Environmental Science Engineering in China, 2, 397–409.

    Article  Google Scholar 

  • Ravikumar, J. X., & Gurol, M. D. (1994). Chemical oxidation of chlorinated organics by hydrogen peroxide in the presence of sand. Environmental Science & Technology, 28, 394–400.

    Article  CAS  Google Scholar 

  • Raychoudhury, T., Naja, G., & Ghoshal, S. (2010). Assessment of transport of two polyelectrolyte-stabilized zero-valent iron nanoparticles in porous media. Journal of Contaminant Hydrology, 118, 143–151.

    Article  CAS  Google Scholar 

  • Saleh, N., Kim, H.-J., Phenrat, T., Matyjaszewski, K., Tilton, R. D., & Lowry, G. V. (2008). Ionic strength and composition affect the mobility of surface-modified Fe0 nanoparticles in water-saturated sand columns. Environmental Science & Technology, 42, 3349–3355.

    Article  CAS  Google Scholar 

  • Saleh, N., Sirk, K., Liu, Y., Phenrat, T., Dufour, B., Matyjaszewski, K., Tilton, R. D., & Lowry, G. V. (2007). Surface modifications enhance nanoiron transport and NAPL targeting in saturated porous media. Environmental Engineering Science, 24, 45–57.

    Article  CAS  Google Scholar 

  • Schmidt, L. D. (2004). The Engineering of Chemical Reactions New York: Oxford University Press.

  • Schrick, B., Hydutsky, B. W., Blough, J. L., & Mallouk, T. E. (2004). Delivery vehicles for zerovalent metal nanoparticles in soil and groundwater. Chemistry of Materials, 16, 2187–2193.

    Article  CAS  Google Scholar 

  • Schroth, M. H., Oostrom, M., Wietsma, T. W., & Istok, J. D. (2001). In-situ oxidation of trichloroethene by permanganate: effects on porous medium hydraulic properties. Journal of Contaminant Hydrology, 50, 79–98.

    Article  CAS  Google Scholar 

  • Shafieiyoun, S., Ebadi, T., & Nikazar, M. (2012). Treatment of landfill leachate by Fenton process with nano sized zero valent iron particles. International Journal of Environmental Research, 6, 119–128.

    CAS  Google Scholar 

  • Shu, H. Y., Chang, M. C., & Chang, C. C. (2009). Integration of nanosized zero-valent iron particles addition with UV/H2O2 process for purification of azo dye Acid Black 24 solution. Journal of Hazardous Materials, 167, 1178–1184.

    Article  CAS  Google Scholar 

  • Siegrist, R. L., Crimi, M., & Simpkin, T. J. (2011). In situ chemical oxidation for groundwater remediation. New York: Springer.

    Book  Google Scholar 

  • Sra, K. S., Thomson, N. R., & Barker, J. F. (2010). Persistence of persulfate in uncontaminated aquifer materials. Environmental Science & Technology, 44, 3098–3104.

    Article  CAS  Google Scholar 

  • Thiruvenkatachari, R., Vigneswaran, S., & Naidu, R. (2008). Permeable reactive barrier for groundwater remediation. Journal of Industrial and Engineering Chemistry, 14, 145–156.

    Article  CAS  Google Scholar 

  • USEPA. (2009). IRIS toxicological review of trichloroethylene. Washington: USEPA.

    Google Scholar 

  • Wei, Y.-T., Wu, S.-C., Chou, C.-M., Che, C.-H., Tsai, S.-M., & Lien, H.-L. (2010). Influence of nanoscale zero-valent iron on geochemical properties of groundwater and vinyl chloride degradation: a field case study. Water Research, 44, 131–140.

    Article  CAS  Google Scholar 

  • Wernke, M., & Schell, J. (2004). Solvents and malignancy. Clinical Occupational Environmental Medicine, 4, 513–527.

    Article  Google Scholar 

  • Wong, O. (2004). Carcinogenicity of trichloroethylene: an epidemiologic assessment. Clinical Occupational Environmental Medicine, 4, 557–589.

    Article  Google Scholar 

  • Xu, L., & Wang, J. (2011). A heterogeneous Fenton-like system with nanoparticulate zero-valent iron for removal of 4-chloro-3-methyl phenol. Journal of Hazardous Materials, 186, 256–264.

    Article  CAS  Google Scholar 

  • Xu, X. (2006). Interaction of chemical oxidants with aquifer materials. Waterloo: Civil and Environmental Engineering, University of Waterloo.

    Google Scholar 

  • Zhan, J., Zheng, T., Piringer, G., Day, C., McPherson, G. L., Lu, Y., Papadopoulos, K., & John, V. T. (2008). Transport characteristics of nanoscale functional zerovalent iron/silica composites for in situ remediation of trichloroethylene. Environmental Science & Technology, 42, 8871–8876.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support for this investigation was provided by a King Abdul-Aziz City for Science & Technology (KACST) Scholarship awarded to the first author, and a Natural Sciences and Engineering Research Council (NSERC) of Canada Collaborative Research and Development grant held by N.R. Thomson.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neil R. Thomson.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 60 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Al-Shamsi, M.A., Thomson, N.R. Treatment of a Trichloroethylene Source Zone using Persulfate Activated by an Emplaced Nano-Pd–Fe0 Zone. Water Air Soil Pollut 224, 1780 (2013). https://doi.org/10.1007/s11270-013-1780-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-013-1780-1

Keywords

Navigation