Skip to main content
Log in

Toxicity of Epoxiconazole to the Marine Diatom Chaetoceros calcitrans: Influence of Growth Conditions and Algal Development Stage

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The triazole fungicide epoxiconazole is extensively used to control fungi on crops and may present some potential risk from runoff on coastal ecosystems located close to agricultural areas. Phytotoxicity assessments were conducted on the marine diatom Chaetoceros calcitrans using both the active ingredient and its formulated product (Opus). The 3-day EC50 using cell count was 2.31 mg/L for epoxiconazole active ingredient and 2.9 μg/L for epoxiconazole-formulated. The fungicide produced an increase of cellular volume, pigment (chlorophylls a, c, and carotenoids) content, ATP synthesis, and rates of photosynthesis and respiration. Progressive algal cell recovery from epoxiconazole effects occurred after 3 days, with the increasing cell density. Differences in cell age, light, and nutrient composition induced changes in epoxiconazole sensitivity. Since these parameters affect cellular division rates, the cellular density is an important parameter in toxicity tests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • AFNOR (1998). Qualité de l’eau - Essai d’inhibition de la croissance des algues marines avec Skeletonema costatum et Phaeodactylum tricornutum. NF EN ISO 10253, T90-311, p. 8

  • AGRITOX (2010). Base de données sur les substances actives phytopharmaceutiques www.dive.afssa.fr/agritox/index.php. Accessed 23 May 2010.

  • Akcha, F., Arzul, G., Rousseau, S., & Bardouil, M. (2008). Comet assay in phytoplankton as biomarker of genotoxic effects of environmental pollution. Marine Environmental Research, 66, 59–61.

    Article  CAS  Google Scholar 

  • Akers, A., Köhle, H., & Gold, R. E. (1990). Uptake, transport and mode of action of BAS 480 F, a new triazole fungicide. Brighton Crop Protection Conference—Pests and Diseases, 2, 837–845.

    Google Scholar 

  • Ammermann, E., Lorenz, G., Schelberger, K., Sauter, H., & Rentzea, C. (1992). A broad-spectrum fungicide with a new mode of action. Brighton Crop Protection Conference—Pest and Diseases, 1, 403–410.

    Google Scholar 

  • Baird, T. D., & DeLorenzo, M. E. (2010). Descriptive and mechanistic toxicity of conazole fungicides using the model test alga Dunaliella tertiolecta (Chlorophyceae). Environmental Toxicology, 25, 213–220.

    CAS  Google Scholar 

  • Benton, J. M., & Cobb, A. H. (1997). The modification of phytosterol profiles and in vitro photosynthetic electron transport of Galium aparine L. (Cleavers) treated with the fungicide, epoxiconazole. Plant Growth Regulation, 22, 93–100.

    Article  CAS  Google Scholar 

  • Bertelsen, J. R., de Neergaard, E., & Smedegaard-Petersen, V. (2001). Fungicidal effects of azoxystrobin and epoxiconazole on phyllosphere fungi, senescence and yield of winter wheat. Plant Pathology, 50, 190–205.

    Article  CAS  Google Scholar 

  • Bromilow, R. H., Evans, A. A., & Nicholls, P. H. (1999). Factors affecting degradation rates of five triazole fungicides in two soil types: 2. Field studies. Pesticide Science, 55, 1135–1142.

    CAS  Google Scholar 

  • Buerge, I. J., Poiger, T., Müller, M. D., & Buser, H. D. (2006). Influence of pH on the stereoselective degradation of the fungicides epoxiconazole and cyproconazole in soils. Environmental Science and Technology, 40, 5443–5450.

    Article  CAS  Google Scholar 

  • Caux, P. Y., Ménard, L., & Kent, R. A. (1996). Comparative study of the effects of MCPA, butylate, atrazine, and cyanazine on Selenastrum capricornutum. Environmental Pollution, 92, 219–225.

    Article  CAS  Google Scholar 

  • EFSA Scientific Report (2008). Conclusion on the peer review of epoxiconazole. 138, 1–80.

  • Gala, W. R., & Giesy, J. P. (1993). Using the carotenoid biosynthesis inhibiting herbicide, Fluridone, to investigate the ability of carotenoid pigments to protect algae from the photo-induced toxicity of anthracene. Aquatic Toxicology, 27, 61–70.

    Article  CAS  Google Scholar 

  • Guillard, R. R. L., & Ryther, J. H. (1962). Studies of marine planktonic diatoms Cyclotella nana Hustedt and Detonula confervacea Cleve. Canadian Journal of Microbiology, 8, 229–239.

    Article  CAS  Google Scholar 

  • Hourmant, A., Amara, A., Pouline, P., Durand, G., Arzul, G., & Quiniou, F. (2009). Effect of bentazon on growth and physiological responses of marine diatom: Chaetoceros gracilis. Toxicology Mechanisms and Methods, 19, 109–115.

    Article  CAS  Google Scholar 

  • Jaleel, C. A., Gopi, R., & Panneerselvann, R. (2008). Growth and photosynthetic pigments responses of two varieties of Catharantus roseus to triadimefon treatment. Comptes Rendus de Biologies, 331, 272–277.

    Article  Google Scholar 

  • Jeffrey, S. W., & Humphrey, G. F. (1975). New spectrophotometric equations for determining chlorophyll a, b, c1 and c2 in higher plants, algae and natural populations. Biochemie und Physiology der Pflanzen, 167, 191–194.

    CAS  Google Scholar 

  • Kwok, I. M. Y., & Loeffler, R. T. (1993). The biochemical mode of action of some newer azole fungicides. Pesticide Science, 39, 1–11.

    Article  CAS  Google Scholar 

  • Lin, H. T., Wong, S. S., & Li, G. C. (2001). Dissipation of epoxiconazole in the paddy field under subtropical conditions of Taiwan. Journal of Environmental Science and Health, B36, 409–420.

    CAS  Google Scholar 

  • Lipok, J., Studnik, H., & Gruyaert, S. (2010). The toxicity of Roundup® 360 SL formulation and its main constituents: glyphosate and isopropylamine towards non-target photoautotrophs. Ecotoxicology and Environmental Safety, 73, 1681–1688.

    Article  CAS  Google Scholar 

  • Martin Tsui, T. K., & Chu, L. M. (2003). Aquatic toxicity of glyphosate-based formulations: comparison between different organisms and the effects of environmental factors. Chemosphere, 52, 1189–1197.

    Article  Google Scholar 

  • Mayer, P., & Jensen, J.F. (1995). Factors affecting results of algal toxicity tests. Institute for Environmental Science and Technology. Technical University of Denmark, Lyngby.

  • Moreno-Garrido, L., Lubiăn, L. M., & Soares, A. M. V. M. (2000). Influence of cellular density on determination of EC50 in microalgal growth inhibition tests. Ecotoxicology and Environmental Safety, 47, 112–116.

    Article  CAS  Google Scholar 

  • Nørgaard, K. B., & Cedergreen, N. (2010). Pesticide cocktails can interact synergically on aquatic crustaceans. Environmental Science and Pollution Research, 17, 957–967.

    Article  Google Scholar 

  • Oakes, D. J., & Pollak, J. K. (2000). The in vitro evaluation of the toxicities of three related herbicide formulations containing ester derivates of 2,4,5-T and 2,4-D using sub-mitochondrial particles. Toxicology, 151, 1–9.

    Article  CAS  Google Scholar 

  • Passeport, E., Benoit, P., Bergheaud, V., Coquet, Y., & Tournebize, J. (2011). Epoxiconazole degradation from artificial wetland and forest buffer substrates under flooded conditions. Chemical Engineering Journal, 173, 760–765.

    Article  CAS  Google Scholar 

  • Percival, G. C., & Noviss, K. (2008). Triazole induced drought tolerance in horse chestnut (Aesculus hippocastanum). Tree Physiology, 28, 1685–1692.

    Article  CAS  Google Scholar 

  • Pereira, J. L., Antunes, S. C., Castro, B. B., Marques, C. R., Gonçalves, A. M. M., Gonçalves, F., & Pereira, R. (2009). Toxicity evaluation of three pesticides on non-target aquatic and soil organisms: commercial formulation versus active ingredient. Ecotoxicology, 18, 455–463.

    Article  CAS  Google Scholar 

  • Rioboo, C., Gonzalez, O., Herrero, C., & Cid, A. (2002). Physiological response of freshwater microalga (Chlorella vulgaris) to triazine and phenylurea herbicides. Aquatic Toxicology, 59, 225–235.

    Article  CAS  Google Scholar 

  • Sbrilli, G., Calamati, E., Boccalini, S., Bimbi, B., & Pistolesi, F. (2003). Effects of nutrients and salinity on the algal assay using Pseudokirshneriella subcapitata (Korshikov) Hindak. Bulletin of Environmental Contamination and Toxicology, 71, 609–616.

    Article  CAS  Google Scholar 

  • Schöfl, U. A., & Zinkernagel, V. (1997). A test method based on microscopic assessments to determine curative and protectant fungicide properties against Septoria tritici. Plant Pathology, 46, 545–556.

    Article  Google Scholar 

  • Stachowski-Haberkorn, S., Quiniou, F., Nédélec, M., Robert, R., Limon, G., & de la Broise, D. (2008). In-situ microcosms, a tool for assessment of pesticide impacts on oyster spat (Crassostrea gigas). Ecotoxicology, 17, 235–245.

    Article  CAS  Google Scholar 

  • Stachowski-Haberkorn, S., Quiniou, L., Beker, B., Haberkorn, H., Marie, D., & de la Broise, D. (2009). Comparative study of three analysis methods (TTGE, flow cytometry and HPLC) for xenobiotic assessment on phytoplankton communities. Ecotoxicology, 18, 364–376.

    Article  CAS  Google Scholar 

  • Tang, J., Hoagland, K. D., & Siegfried, B. D. (1998). Uptake and bioconcentration of atrazine by selected freshwater algae. Environmental Toxicology and Chemistry, 17, 1085–1090.

    Article  CAS  Google Scholar 

  • Tomlin, C. D. S. (1999). The pesticide manual (12th ed.). Farnham: British Crop Protection Council.

    Google Scholar 

  • Tuckey, D. M., Orcutt, D. M., & Hipkins, P. L. (2002). Inherent and growth stage-related differences in growth and lipid composition of algal species sensitive and tolerant to sterol-inhibiting fungicides. Environmental Toxicology and Chemistry, 21, 1715–1723.

    CAS  Google Scholar 

  • Vindimian, E. (2009). MSExcel macro REGTOX_EV7.0.5.xls; http://www.normalesup.org/~vindimian/DOC_fr_web/doc_fr_2.html. Accessed 5 Nov 2009.

  • Vindimian, E., Robaut, C., & Fillion, G. (1983). A method for cooperative binding studies using non linear regression analysis on a microcomputer. Journal of Applied Biochemistry, 5, 261–268.

    CAS  Google Scholar 

  • Wu, Y. X., & von Tiedemann, A. (2001). Physiological effects of azoxystrobin and epoxiconazole on senescence and the oxidative status of wheat. Pesticide Biochemistry and Physiology, 71, 1–10.

    Article  CAS  Google Scholar 

  • Zeitzschel, B. (1978). Why study phytoplankton? In A. Sournia (Ed.), Phytoplankton manual (pp. 1–5). Paris: UNESCO.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anis Amara.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Amara, A., Quiniou, F., Durand, G. et al. Toxicity of Epoxiconazole to the Marine Diatom Chaetoceros calcitrans: Influence of Growth Conditions and Algal Development Stage. Water Air Soil Pollut 224, 1417 (2013). https://doi.org/10.1007/s11270-012-1417-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-012-1417-9

Keywords

Navigation