Skip to main content
Log in

Biodegradation of the Anionic Surfactant Linear Alkylbenzene Sulfonate (LAS) by Autochthonous Pseudomonas sp.

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Anionic surfactants, the earliest and the most common surfactants in detergent and cosmetic product formulations contribute significantly to the pollution profile of the ecosystem. Linear alkylbenzene sulfonates (LAS), a major chemical constituent of detergents, forms an imperative group of anionic surfactants. Bioremediation of LAS by conventional processes such as activated sludge is ineffective due to the low kinetics of degradation by unsuitable organisms and foam production. Hence this study was focused on isolating and characterizing indigenous LAS-degrading bacteria from soil. Twenty different LAS-degrading bacteria were isolated from detergent-contaminated soil by enrichment culture technique and degradation efficiency was assessed by Methylene Blue Active Substances (MBAS) assay and by reverse-phase high-performance liquid chromatography (HPLC) analysis. The most efficient LAS-degrading isolates, L9 (81.33 ± 0.7) and L12 (81.81 ± 0.8), were selected and identified as Pseudomonas nitroreducens (MTCC 10463) and Pseudomonas aeruginosa (MTCC 10462). The 16S rDNA sequences of the isolates were deposited in NCBI GenBank under the accession numbers HQ 271083 (L9) and HQ 271084 (L12). The isolates were capable of degrading 0.05 g/l LAS at 25 °C and pH 7.0–7.5. Presence of a solid support caused biofilm formation which in turn enhanced LAS degradation. The isolates tend to display diauxic growth with alternate carbon source such as dextrose. These isolates also have the capability to degrade other xenobiotics like hydrocarbons and pesticides. Since xenobiotic pollutants in nature occur as a mixture of compounds rather than single pollutants, the potential of these two indigenous LAS-degrading isolates to degrade multiple xenobiotics gains relevance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Andrew, E. J., Hales, S. G., Ur-Rehman, N. G. A., White, G. F., et al. (2002). Novel alkylsulphatases required for the biodegradation of the branched primary alkyl sulphate surfactant 2-butyloctyl sulphate. Applied and Environmental Microbiology, 68, 31–36.

    Article  Google Scholar 

  • Asok, A. K., & Jisha, M. S. (2012). Assessment of soil microbial toxicity on acute exposure of the anionic surfactant linear alkylbenzene sulphonate. Journal of Environmental Science and Technology, 1–10. doi:10.3923/jest.2012.

  • Asok, A. K., Ratheesh, K. K., Sherief, P. M., Jisha, M. S., et al. (2012). Oxydative stress and changes in gill morphology of grass carp (Ctenopharyngodon idella) exposed to sublethal concentrations of the anionic surfactant linear alkylbenzene sulphonate (LAS). Global Journal of Applied Environmental Sciences, 2(1), 1–11.

    Google Scholar 

  • Berna, J. L., Ferrer, J., Moreno, A., Prats, D., Ruiz, F., et al. (1989). The fate of LAS in the environment. Tenside Surfactant Detergents, 23, 101–107.

    Google Scholar 

  • Chaturvedi, V., & Kumar, Ashok. (2011). Diversity of culturable sodium dodecyl sulfate (SDS) degrading bacteria isolated from detergent contaminated ponds situated in Varanasi city, India. International Biodeterioration and Biodegradation, 65, 961–971.

    Article  CAS  Google Scholar 

  • Cirelli, A. E., Ojeda, Carlos, Mariano, J. L., Castro, Miquel Salgot, et al. (2008). Surfactants in sludge-amended agricultural soils: A review. Environmental Chemistry Letters, 6, 135–148. doi:10.1007/s10311-008-0146-1.

    Article  Google Scholar 

  • Claus, G. W., & Balkwill, D. (1989). Understanding microbes: A laboratory textbook for microbiology. NY: Freeman.

    Google Scholar 

  • Deksissa, T., & Vanrolleghem, P. A. (2003). Effect of nutrient dynamics on organic contaminant fate in rivers: A microcosm study. Communications in Agricultural and Applied Biological Sciences, 68(3), 111–114.

    Google Scholar 

  • DeWolf, W., & Feijitel, T. (1998). Terrestrial risk assessment for linear alkyl benzene sulfonate (LAS) in sludge-amended soils. Chemosphere, 36, 1319–1343.

    Article  CAS  Google Scholar 

  • Dhouib, A., Hamad, N., Hassairi, I., et al. (2003). Degradation of anionic surfactants by Citrobacter braakii. Process Biochemistry, 38, 1245–1250.

    Article  CAS  Google Scholar 

  • Eichhorn, P., Rodrigues, S. V., Baumann, W., Knepper, T. P., et al. (2002). Incomplete degradation of linear alkylbenzene sulfonate surfactants in Brazilian surface waters and pursuit of their polar metabolites in drinking waters. Science of the Total Environment, 284, 123–134.

    Article  CAS  Google Scholar 

  • Garcia, M. T., Campos, E., Ribosa, I., Latorre, A., Sanchez-Leal, J., et al. (2005). Anaerobic digestion of LAS: Biodegradation kinetics and metabolite analysis. Chemosphere, 60, 1636–1643.

    Article  CAS  Google Scholar 

  • Ghose, N. C., Saha, Dipankar, Gupta, Anjali, et al. (2009). Synthetic detergents (surfactants) and organochlorine pesticide signatures in surface water and groundwater of Greater Kolkata, India. Journal of Water Resource and Protection, 4, 290–298. doi:10.4236/jwarp.2009.

    Article  Google Scholar 

  • Hayashi, K. (1975). A rapid determination of sodium dodecyl sulfate with methylene blue. Analytical Biochemistry, 67, 503–506.

    Article  CAS  Google Scholar 

  • Hofer, R., Jeney, Z., & Bucher, F. (1995). Chronic effects of linear alkylbenzene sulfonate (LAS) and ammonia on rainbow trout (Oncorhynchus mykiss) fry at water criteria limits. Water Research, 29, 2725–2729.

    Article  CAS  Google Scholar 

  • Holt, J. G., Krieg, N. R., Sneath, P. H. A., Staloj, J. T., Williams, S. T., et al. (1994). Bergey’s manual of determinative bacteriology (9th ed.). Baltimore: Williams and Wilkins.

    Google Scholar 

  • Jensen, J., Lokke, H., Holmstrup, M., Krogh, P. H., Elsgaard, L., et al. (2001). Effects and risk assessment of linear alkylbenzene sulfonates in agricultural soil. 5. Probabilistic risk assessment of linear alkylbenzene sulfonates in sludge-amended soils. Environmental Toxicology and Chemistry, 20, 1690–1697.

    Article  CAS  Google Scholar 

  • Kertesz, M. A., Kolbener, P., Stockinger, H., Beil, S., Cook, A. M., et al. (1994). Desulfonation of linear alkylbenzene sulfonated surfactants and related compounds by bacteria. Applied and Environmental Microbiology, 60, 2296–2303.

    CAS  Google Scholar 

  • Khleifat, K. M. (2006). Biodegradation of linear alkylbenzene sulphonate by a two member facultative anaerobic bacterial consortium. Enzyme and Microbial Technology, 39, 1030–1035.

    Article  CAS  Google Scholar 

  • Khleifat, K. M., Tarawneh, Khaled A., Wedyan, Mohammad Ali, Al-Tarawneh, Amjad A., Khalid, Al Sharafa, et al. (2008). Growth kinetics and toxicity of Enterobacter cloacae grown on linear alkylbenzene sulfonate as sole carbon source. Current Microbiology, 57, 364–370. doi:10.1007/s00284-008-9203-z.

    Article  CAS  Google Scholar 

  • Knaebel, D. B., Federle, T. W., Vestal, J. R., et al. (1990). Mineralisation of linear alkylbenzene sulphonate (LAS) and linear alcohol ethoxylate (LAE) in 11 contrasting soils. Environmental Toxicology and Chemistry, 9, 981–988.

    Article  CAS  Google Scholar 

  • Knaebel, D. B., Federle, T. W., McAvoy, D. C., Vestals, J. R., et al. (1994). Effect of mineral and organic soil constituents on microbial mineralization of organic compounds in a natural soil. Applied and Environmental Microbiology, 60, 4500–4508.

    CAS  Google Scholar 

  • Konopka, A., Zakharova, T., Oliver, L., Turco, R.F., et al. (2000). Microbial biodegradation of organic wastes containing surfactants in a continuous-flow reactor. Journal of Industrial Microbiology and Biotechnology, 18, 235-/40.

    Google Scholar 

  • Mackay, D., Di Guardo, A., Paterson, S., Kicsi, G., Cowan, C. E., Kane, D. M., et al. (1996). Assessment of chemical fate of LAS in the environment using evaluative, regional and local scale models, illustrative application to chlorobenzene and linear alkylbenzene sulphonates. Environmental Toxicology and Chemistry, 15(9), 1638–1648.

    Article  CAS  Google Scholar 

  • Nakae, A., Tsuji, Kazuro, Yamanka, Makoto, et al. (1981). Determination of alkylchain distribution of alkylbenzene sulphonate by liquid chromatography. Analytical Chemistry, 53, 1818–1821.

    Article  CAS  Google Scholar 

  • Prats, D., Lopez, Carmen, Vellinjo, Diana, Vavo, Pedro, Leon, Victor M., et al. (2006). Effect of temperature on biodegradation of linear alkylbenzene sulfonate and alcohol ethoxylate. Journal of Surfactants and Detergaens, 9, 69–75.

    Article  CAS  Google Scholar 

  • Schleheck, D. (2003). Biodegradation of synthetics surfactants: Linear alkylbenzene sulfonates (LAS) and related compounds. PhD Thesis. Germany: University of Konstanz.

    Google Scholar 

  • Singh, A., Van Hamme, J. D., Ward, O. P., et al. (2007). Surfactants in microbiology and biotechnology. Biotechnology Advances, 25, 99–122.

    Article  CAS  Google Scholar 

  • Swisher, R. D. (1987). Surfactant biodegradation (2nd ed., pp. 587–614). New York: Dekker.

    Google Scholar 

  • Takamatsu, Y., Nishimura, O., Inamori, Y., Sudo, R., Matsumura, M., et al. (1996). Effect of temperature on biodegradability of surfactants in aquatic microcosm system. Water Science and Technology, 34(7–8), 61–68.

    Article  CAS  Google Scholar 

  • Trehy, M. L., Gledhill, W. E., Mieure, J. P., Adamove, J. E., Nielsen, A. M., Perkins, H. O., et al. (1996). Environmental monitoring for lauryl alkylbenzenes, dialkyltetralin sulfonates and their biodegradation intermediated. Environmental Toxicology and Chemistry, 15, 233–240.

    Article  CAS  Google Scholar 

  • Van der Meeren, P., & Verstraete, W. (1996). Surfactants in relation to bioremediation and wastewater treatment. Current Opinion in Colloid and Interface Science, 1(5), 624–634.

    Article  Google Scholar 

  • Vives-Rego, J., Lopez-Amoros, R., Guindulain, T., Garcia, M. T., Comas, J., Sanchez-Leal, J., et al. (2000). Microbial aspect of linear alkylbenzene sulphonate degradation in coastal water. Journal of Surfactants and Detergents, 3(3), 303–307.

    Article  CAS  Google Scholar 

  • Yeldho, D., Rebello, Sharrel, Jisha, M. S., et al. (2011). Plasmid-mediated biodegradation of the anionic surfactant sodium dodecyl sulphate, by Pseudomonas aeruginosa S7. Bulletin of Environmental Contamination and Toxicology, 86, 110–113. doi:10.1007/s00128-010-0162-2.

    Article  CAS  Google Scholar 

  • Zhang, Z., Schwartz, Scott, Wagner, Lukas, Miller, Webb, et al. (2000). A greedy algorithm for aligning DNA sequences. Journal of Computational Biology, 7(1–2), 203–214.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the Kerala State Council for Science, Technology, and Environment (KSCSTE), Thiruvananthapuram, Kerala, India for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. S. Jisha.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Asok, A.K., Jisha, M.S. Biodegradation of the Anionic Surfactant Linear Alkylbenzene Sulfonate (LAS) by Autochthonous Pseudomonas sp.. Water Air Soil Pollut 223, 5039–5048 (2012). https://doi.org/10.1007/s11270-012-1256-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-012-1256-8

Keywords

Navigation