Skip to main content
Log in

Nutrient Accumulation in Typha latifolia L. and Sediment of a Representative Integrated Constructed Wetland

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

This paper investigates the role of plants and sediment in removing nutrients from wastewater being treated in a representative integrated constructed wetland (ICW). It discusses the role of plants and sediment in removing nutrients from an ICW treating agricultural wastewater for more than 7 years. More nitrogen and phosphorus were stored in wetland soils and sediments than in plants. The first cell had the highest depth of sediment accumulation (45 cm). Over the 7-year operation period, the accretion rate was approximately 6.4 cm/year. With respect to maintenance, desludging of the first wetland cell of the ICW system appears to be necessary in 2011. An average of 10,000 m3 per year of wastewater entered the ICW. Approximately 74% (780 kg) of the phosphorus and 52% (5,175 kg) of the nitrogen that entered the wetland system was stored in the wetland soils and sediments. Plants stored a small fraction of nutrients compared to soils (<1% for both nitrogen and phosphorus). This study demonstrates that soils within a mature wetland system are an important and sustainable nutrient storage component.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bastviken, S. K., Eriksson, P. G., Martins, I., Neto, J. M., Leonardson, L., & Tonderski, K. S. (2003). Potential nitrification and denitrification on different surfaces in a constructed treatment wetland. Journal of Environmental Quality, 32(6), 2414–2420.

    Article  CAS  Google Scholar 

  • Borin, M., & Tocchetto, D. (2007). Five year water and nitrogen balance for a constructed surface flow wetland treating agricultural drainage waters. The Science of the Total Environment, 380(1–3), 38–47.

    CAS  Google Scholar 

  • Brisson, J., & Chazarenc, F. (2008). Maximizing pollutant removal in constructed wetlands: should we pay more attention to macrophyte species selection? The Science of the Total Environment, 407(13), 3923–3930.

    Google Scholar 

  • Brix, H. (1994). Functions of macrophytes in constructed wetlands. Water Science and Technology, 29(4), 71–78.

    CAS  Google Scholar 

  • Brix, H. (1997). Do macrophytes play a role in constructed treatment wetlands? Water Science and Technology, 35(5), 11–17.

    Article  CAS  Google Scholar 

  • Brix, H., Dyhr-Jensen, K., & Lorenzen, B. (2002). Root-zone acidity and nitrogen source affects Typha latifolia L. growth and uptake kinetics of ammonium and nitrate. Journal of Experimental Botany, 53(379), 2441–2450.

    Article  CAS  Google Scholar 

  • Craft, C. B., & Richardson, C. J. (1993). Peat accretion and N, P, and organic C accumulation in nutrient–enriched and unenriched Everglades peatlands. Ecological Applications, 3(3), 446–458.

    Article  Google Scholar 

  • Crites, R. W., Middlebrooks, E. J., & Reed, S. C. (2006). Natural wastewater treatment systems. Boca Raton: CRC.

    Google Scholar 

  • Debusk, W. F., & Reddy, K. R. (2005). Litter decomposition and nutrient dynamics in a phosphorus enriched everglades marsh. Biogeochemistry, 75(2), 217–240.

    Article  Google Scholar 

  • DeBusk, T. A., Burgoon, P. S., & Reddy, K. R. (1989). Secondary treatment of wastewater using floating and emergent macrophytes. In D. A. Hammer (Ed.), Constructed wetlands for wastewater treatment: municipal, agricultural, and industrial. Chelsea: Lewis Publishers.

    Google Scholar 

  • Dolan, T. J., Bayley, S. E., Zoltek, J., Jr., & Hermann, A. J. (1981). Phosphorus dynamics of a Florida freshwater marsh receiving treated wastewater. Journal of Applied Ecology, 18(1), 205–219.

    Article  CAS  Google Scholar 

  • Dunne, E. J., Culleton, N., O’Donovan, G., Harrington, R., & Daly, K. (2005). Phosphorus retention and sorption by constructed wetland soils in Southeast Ireland. Water Research, 39(18), 4355–4362.

    Article  CAS  Google Scholar 

  • Dunne, E. J., Smith, J., Perkins, D. B., Clark, M. W., Jawitz, J. W., & Reddy, K. R. (2007). Phosphorus storages in historically isolated wetland ecosystems and surrounding pasture uplands. Ecological Engineering, 31(1), 16–28.

    Article  Google Scholar 

  • Faulkner, S. P., & Richardson, C. J. (1989). Physical and chemical characteristics of freshwater soils. In D. A. Hammer (Ed.), Constructed wetlands for wastewater treatment: municipal, agricultural, and industrial (pp. 41–72). Boca Raton: Lewis Publishers.

    Google Scholar 

  • Garver, E. G., Dubbe, D. R., & Pratt, D. C. (1988). Seasonal patterns in accumulation and partitioning of biomass and macronutrients in Typha spp. Aquatic Botany, 32(1–2), 115–127.

    Article  Google Scholar 

  • Gottschall, N., Boutin, C., Crolla, A., Kinsley, C., & Champagne, P. (2007). The role of plants in the removal of nutrients at a constructed wetland treating agricultural (dairy) wastewater, Ontario, Canada. Ecological Engineering, 29(2), 54–163.

    Article  Google Scholar 

  • Graham, S. A., Craft, C. B., McCormick, P. V., & Aldous, A. (2005). Forms and accumulation of soil P in natural and recently restored peatlands — Upper Klamath Lake, Oregon, USA. Wetlands, 25(3), 594–606.

    Article  Google Scholar 

  • Greenway, M., & Woolley, A. (2001). Changes in plant biomass and nutrient removal over 3 years in a constructed wetland, Cairns, Australia. Water Science and Technology, 44(11–12), 303–310.

    CAS  Google Scholar 

  • Hammer, D. A., Pullin, B. P., McCaskey, T. A., Eason, J., & Payne, V. W. E. (1993). Treating livestock wastewater with constructed wetlands. In G. A. Moshiri (Ed.), Constructed wetlands for water quality improvement (pp. 343–347). Boca Raton: CRC.

    Google Scholar 

  • Hunt, P. G., & Poach, M. E. (2000). State of the art for animal wastewater treatment in constructed wetlands. In Proceedings of the Seventh International Conference on Wetland Systems for Water Pollution Control (pp. 707–718). Lake Buena Vista: International Water Association.

    Google Scholar 

  • Kadlec, R. H. (2005). Vegetation effects on ammonia reduction in treatment wetland. In J. Vymazal (Ed.), Natural and constructed wetlands: nutrients, metals and management (pp. 233–260). Leiden: Backhuys Publishers.

    Google Scholar 

  • Kadlec, R. H. (2009a). Wastewater treatment at Houghton Lake, Michigan: Hydrology and water quality. Ecological Engineering, 3(9), 1287–1311.

    Article  Google Scholar 

  • Kadlec, R. H. (2009b). Wastewater treatment at the Houghton Lake wetland: soils and sediments. Ecological Engineering, 35(9), 1333–1348.

    Article  Google Scholar 

  • Kadlec, R. H., & Bevis, F. B. (2009). Wastewater treatment at the Houghton Lake wetland: vegetation response. Ecological Engineering, 35(9), 1312–1332.

    Article  Google Scholar 

  • Kadlec, R. H., & Wallace, S. D. (2009). Treatment wetlands. Boca Raton: CRC.

    Google Scholar 

  • Karathanasis, A. D., Potter, C. L., & Coyne, M. S. (2003). Vegetation effects on fecal bacteria, BOD, and suspended solid removal in constructed wetlands treating domestic wastewater. Ecological Engineering, 20(2), 157–169.

    Article  Google Scholar 

  • Meuleman, A. F. M., Beekman, J. P. H., & Verhoeven, J. T. A. (2002). Nutrient retention and nutrient-use efficiency in Phragmites australis stands after wastewater application. Wetlands, 22(4), 712–721.

    Article  Google Scholar 

  • Mustafa, A., Scholz, M., Harrington, R., & Carroll, P. (2009). Long-term performance of a representative integrated constructed wetland treating farmyard runoff. Ecological Engineering, 35(5), 779–790.

    Article  Google Scholar 

  • Newman, J. M., Clausen, J. C., & Neafsey, J. A. (2000). Seasonal performance of a wetland constructed to process dairy milkhouse wastewater in Connecticut. Ecological Engineering, 14(1–2), 181–198.

    Google Scholar 

  • Pant, H. K., & Reddy, K. R. (2001). Phosphorus sorption characteristics of estuarine sediments under different redox conditions. Journal of Environmental Quality, 30(4), 1474–1480.

    Article  CAS  Google Scholar 

  • Reddy, K. R., & DeLaune, R. D. (2008). Biogeochemistry of wetlands: science and applications. Boca Raton: CRC.

    Book  Google Scholar 

  • Reddy, K. R., DeLaune, R. D., DeBusk, W. F., & Koch, M. S. (1993). Long-term nutrient accumulation rates in the Everglades. Soil Science Society of America Journal, 57(4), 1147–1155.

    Article  CAS  Google Scholar 

  • Reddy, K. R., Wang, Y., DeBusk, W. F., Fisher, M. M., & Newman, S. (1998). Forms of soil phosphorus in selected hydrologic units of the Florida Everglades. Soil Science Society of America Journal, 62(4), 1134–1147.

    Article  CAS  Google Scholar 

  • Rhue, R. D., & Harris, R. G. (1999). Phosphorus sorption/desorption reactions in soils and sediments. In K. R. Reddy, G. A. O’Connor, & C. L. Schleske (Eds.), Phosphorus biogeochemistry in subtropical ecosystems (pp. 187–206). Boca Raton: Lewis Publishers.

    Google Scholar 

  • Sartoris, J., Thullen, J. S., Barber, L. B., & Salas, D. E. (1999). Investigation of nitrogen transformations in a southern California constructed wastewater treatment wetland. Ecological Engineering, 14(1–2), 49–65.

    Article  Google Scholar 

  • Schaafsma, J. A., Baldwin, A. H., & Streb, C. A. (1999). An evaluation of a constructed wetland to treat wastewater from a dairy farm in Maryland, USA. Ecological Engineering, 14(1–2), 199–206.

    Article  Google Scholar 

  • Scholz, M. (2006). Wetland systems to control urban runoff. Amsterdam: Elsevier.

    Google Scholar 

  • Scholz, M., & Hedmark, Å. (2010). Constructed wetlands treating runoff contaminated with nutrients. Water, Air, and Soil Pollution, 205(1), 323–332.

    Article  CAS  Google Scholar 

  • Scholz, M., Harrington, R., Carroll, P., & Mustafa, A. (2007). The integrated constructed wetlands (ICW) concept. Wetlands, 27(2), 337–354.

    Article  Google Scholar 

  • Soto, F., Garcia, M., de Luis, E., & Becares, E. (1999). Role of Scirpus lacustris in bacterial and nutrient removal from wastewater. Water Science and Technology, 40(3), 241–247.

    Article  Google Scholar 

  • Tanner, C. C. (2001). Growth and nutrient dynamics of soft-stem bulrush in constructed wetlands treating nutrient-rich wastewaters. Wetland Ecology and Management, 9(1), 49–73.

    Article  Google Scholar 

  • Tanner, C. C., Clayton, J. S., & Upsdell, M. P. (1995). Effect of loading rate and planting on treatment of dairy farm wastewaters in constructed wetlands – II. Removal of nitrogen and phosphorus. Water Research, 29(1), 27–34.

    Article  CAS  Google Scholar 

  • Tanner, C. C., Sukias, J. P. S., & Upsdell, M. P. (1998). Organic matter accumulation during maturation of gravel-bed constructed wetlands treating farm dairy wastewaters. Water Research, 32(10), 3046–3054.

    Article  CAS  Google Scholar 

  • US EPA. (2000). Constructed wetland treatment of municipal wastewater. Cincinnati: United States (US) Environmental Protection Agency (EPA), Office of Research and Development.

    Google Scholar 

  • Vohla, C., Alas, R., Nurk, K., Baatz, S., & Mander, Ü. (2007). Dynamics of phosphorus, nitrogen and carbon removal in a horizontal subsurface flow constructed wetland. The Science of the Total Environment, 380(1–3), 66–74.

    CAS  Google Scholar 

  • Wallace, S. D., & Knight, R. L. (2006). Small-scale constructed wetland treatment systems. London: Water Environment Research Foundation, International Water Association Publishing.

    Google Scholar 

  • Wood, J. D., Gordon, R., Madani, A., & Stratton, G. W. (2008). A long term assessment of phosphorus treatment by a constructed wetland receiving dairy wastewater. Wetlands, 28(3), 715–723.

    Article  Google Scholar 

  • Zhu, T., & Sikora, F. J. (1995). Ammonium and nitrate removal in vegetated and unvegetated gravel bed microcosm wetlands. Water Science and Technology, 32(3), 219–228.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are very thankful to Rory Harrington (Department of Environment, Heritage and Local Government) and Paul Carroll and Susan Cook (both Waterford County Council) for their support with fieldwork activities. Thanks go to Kate Heal, John Morman, Andrew Gray, Graeme Allan and Ann Mennim (The University of Edinburgh) for assistance in the soil and plant analyses and corresponding interpretation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miklas Scholz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mustafa, A., Scholz, M. Nutrient Accumulation in Typha latifolia L. and Sediment of a Representative Integrated Constructed Wetland. Water Air Soil Pollut 219, 329–341 (2011). https://doi.org/10.1007/s11270-010-0710-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-010-0710-8

Keywords

Navigation