Skip to main content
Log in

Relationship Between pH and Stream Water Total Mercury Concentrations in Shenandoah National Park

  • Published:
Water, Air, and Soil Pollution Aims and scope Submit manuscript

Abstract

The purpose of this study was to gather information on the spatial and temporal variation of stream water total mercury concentrations ([THg]) and to test the hypothesis that stream water [THg] increases as stream pH decreases in the Shenandoah National Park (SNP). We based our hypothesis on studies in lakes that found mercury methylation increases with decreasing pH, and studies in streams that found total mercury and other trace metal concentrations increase with decreasing pH. Stream water was collected at baseflow in SNP in April, July, and October 2005 and February 2006. Contrary to our hypothesis, stream water [THg] decreased with decreasing pH and acid neutralizing capacity. In SNP, stream pH and acid neutralizing capacity are strongly influenced by bedrock geology. We found that bedrock also influences stream water [THg]. Streams on basaltic bedrock had higher [THg] (0.648 ng L−1 ± 0.39) than streams on siliciclastic bedrock (0.301 ng L−1 ± 0.10) and streams on granitic bedrock (0.522 ng L−1 ± 0.06). The higher pH streams on basaltic bedrock had the highest [THg]. The variation in stream water [THg] occurred despite no known variation in wet deposition of mercury across the SNP. The findings of this study indicate that the SNP can be an important area for mercury research with significant variations in mercury concentrations across the park.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  • Allan, C. J., & Heyes, A. (1998). A preliminary assessment of wet deposition and episodic transport of total and methyl mercury from low order Blue Ridge Watersheds, SE USA. Water, Air, and Soil Pollution, 105, 573–592. doi:10.1023/A:1004971824366.

    Article  CAS  Google Scholar 

  • Andersson, S., Nilsson, S. I., & Saetre, P. (2000). Leaching of dissolved organic carbon (DOC) and dissolved organic nitrogen (DON) in mor humus as affected by temperature and pH. Soil Biology & Biochemistry, 32, 1–10. doi:10.1016/S0038-0717(99)00103-0.

    Article  CAS  Google Scholar 

  • Bank, M. S., Loftin, C. S., & Jung, R. E. (2005). Mercury bioaccumulation in northern two-lined salamanders from streams in the northeastern United States. Ecotoxicology (London, England), 14, 181–191. doi:10.1007/s10646-004-6268-8.

    CAS  Google Scholar 

  • Bulger, A. J., Dolloff, C. A., Cosby, B. J., Eshleman, K. N., Webb, J. R., & Galloway, J. N. (1995). The “Shenandoah National Park: Fish in sensitive habitats” (SNP: fish) project. An integrated assessment of fish community responses to stream acidification. Water, Air, and Soil Pollution, 85, 309–314. doi:10.1007/BF00476847.

    Article  CAS  Google Scholar 

  • Castro, M. S., Hilderbrand, R. H., Thompson, J., Heft, A., & Rivers, S. E. (2007). Relationship between wetlands and mercury in brook trout. Archives of Environmental Contamination and Toxicology, 52, 97–103. doi:10.1007/s00244-006-0057-8.

    Article  CAS  Google Scholar 

  • Chen, C. Y., Stemberger, R. S., Kamman, N. C., Mayes, B. M., & Folt, C. L. (2005). Patterns of Hg bioaccumulation and transfer in aquatic food webs across multi-lake studies in the northeast US. Ecotoxicology (London, England), 14, 135–147. doi:10.1007/s10646-004-6265-y.

    CAS  Google Scholar 

  • Driscoll, C. T., Blette, V., Yan, C., Schofield, C. L., Munson, R., & Holsapple, J. (1995). The role of dissolved organic-carbon in the chemistry and bioavailability of mercury in remote Adirondack Lakes. Water, Air, and Soil Pollution, 80, 499–508. doi:10.1007/BF01189700.

    Article  CAS  Google Scholar 

  • Driscoll, C. T., Yan, C., Schofield, C. L., Munson, R., & Holsapple, J. (1994). The mercury cycle and fish in the Adirondack Lakes. Environmental Science & Technology, 28, A136–A143. doi:10.1021/es00052a003.

    Article  Google Scholar 

  • Driscoll, C. T., Han, Y. J., Chen, C. Y., Evers, D. C., Lambert, K. F., Holsen, T. M., Kamman, N. C., & Munson, R. K. (2007). Mercury contamination in forest and freshwater ecosystems in the Northeastern United States. Bioscience, 57, 17–28. doi:10.1641/B570106.

    Article  Google Scholar 

  • Friske, P. W. B., & Coker, W. B. (1995). Importance of geological controls on the natural distribution of mercury in lake and stream sediments across Canada. Water, Air, and Soil Pollution, 80, 1047–1051. doi:10.1007/BF01189764.

    Article  CAS  Google Scholar 

  • Furman, T., Thompson, P., & Hatchl, B. (1998). Primary mineral weathering in the central Appalachians: A mass balance approach. Geochimica et Cosmochimica Acta, 62, 2889–2904. doi:10.1016/S0016-7037(98)00202-6.

    Article  CAS  Google Scholar 

  • Gabriel, M. C., & Williamson, D. G. (2004). Principal biogeochemical factors affecting the speciation and transport of mercury through the terrestrial environment. Environmental Geochemistry and Health, 26, 421–434. doi:10.1007/s10653-004-1308-0.

    Article  CAS  Google Scholar 

  • Grigal, D. F. (2002). Inputs and outputs of mercury from terrestrial watersheds: a review. Environmental Review, 10, 1–39. doi:10.1139/a01-013.

    Article  CAS  Google Scholar 

  • Hyer, K. E., Webb, J. R., & Eshleman, K. N. (1995). Episodic acidification of three streams in Shenandoah National Park, Virginia, USA. Water, Air, and Soil Pollution, 85, 523–528. doi:10.1007/BF00476882.

    Article  CAS  Google Scholar 

  • Kelly, C. A., Rudd, J. W. M., Louis, V. L., & Heyes, A. (1995). Is total mercury concentration a good predictor of methyl mercury concentration in aquatic systems. Water, Air, and Soil Pollution, 80, 715–724. doi:10.1007/BF01189723.

    Article  CAS  Google Scholar 

  • Mason, R. P., Laporte, J. M., & Andres, S. (2000). Factors controlling the bioaccumulation of mercury, methylmercury, arsenic, selenium, and cadmium by freshwater invertebrates and fish. Archives of Environmental Contamination and Toxicology, 38, 283–297. doi:10.1007/s002449910038.

    Article  CAS  Google Scholar 

  • Rasmussen, P. E. (1994). Current methods of estimating atmospheric mercury fluxes in remote areas. Environmental Science & Technology, 28, 2233–2241.

    Article  CAS  Google Scholar 

  • Schroeder, W. H., & Munthe, J. (1998). Atmospheric mercury—An overview. Atmospheric Environment, 32, 809–822. doi:10.1016/S1352-2310(97)00293-8.

    Article  CAS  Google Scholar 

  • USEPA (2002). Method 1631, revision E: Mercury in water by oxidation, purge, and trap, and cold vapor atomic fluorescence spectrometry. Washington, DC: USEPA.

    Google Scholar 

  • Vesely, J., & Majer, V. (1996). The effect of pH and atmospheric deposition on concentrations of trace elements in acidified freshwaters: A statistical approach. Water, Air, and Soil Pollution, 88, 227–246. doi:10.1007/BF00294103.

    Article  CAS  Google Scholar 

  • Young, J., Fleming, G., Townsend, P., & Foster, J. (2006). Vegetation of Shenandoah National Park in relation to environmental gradients. Leetown: US Geological Survey, Leetown Science Center.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. W. Moore.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moore, C.W., Cosby, B.J., Galloway, J.N. et al. Relationship Between pH and Stream Water Total Mercury Concentrations in Shenandoah National Park. Water Air Soil Pollut 201, 233–238 (2009). https://doi.org/10.1007/s11270-008-9940-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-008-9940-4

Keywords

Navigation