Skip to main content
Log in

The Monitoring of Cr(III) and Cr(VI) in Natural Water and Synthetic Solutions: An Assessment of the Performance of the Dgt and Dpc Methods

  • Published:
Water, Air, and Soil Pollution Aims and scope Submit manuscript

Abstract

The technique of diffusive gradients in thin films or diffusive gradient in thin films (DGT) has been used in this work for the in situ measurement of labile Cr(III) and Cr(VI) species. Direct measurement of Cr(VI) was also carried out in parallel with a field-based colourimetric technique based on the EPA 7196 diphenyl-carbohydrazide (DPC) method. The efficiency of the DGT and DPC methods were tested (a) in the laboratory, using synthetic solutions in the presence of realistic concentrations of Cr, humic substances (HS), and ethylenediaminetetraacetic acid (EDTA), and (b) in the field, in river water affected by effluents discharged by the tannery industry. The main advantage of the DGT method is that it allows the in situ separation of labile species of Cr(III) and Cr(VI), though there are still uncertainties about its performance in field conditions. The DPC method proved to be a fast, accurate, and relatively economical option for the field-based determination of Cr(VI). Sample acidification and ageing of unacidified samples from contaminated aquatic environments, produced significant errors in the determination of ‘dissolved’ Cr. The concentration of Cr(VI) determined by either the DGT or the DPC method exceeds recommended international guidelines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Achterberg, E. P., Van Den Berg, C. M. G., Boussemart, M. and Davidson, W.: 1997, ‘Speciation and cycling of trace metals in Esthwaite water: A productive English lake with seasonal deep-water anoxia’, Geochim. Cosmochim. Acta 61, 5233–5253.

    CAS  Google Scholar 

  • Alfaro-De la Torre, M. C., Beaulieu, P. and Tessier, A.: 2000, ‘In situ measurement of trace metals in lakewater using the dialysis and DGT technique’, Anal. Chim. Acta 418, 53–68.

    Article  Google Scholar 

  • Baes, C. F. Jr. and Mesmer, R. E.: 1977, The Hydrolysis of Cations, John Wiley, New York.

    Google Scholar 

  • Ball, J. W. and Nordstrom, D. K.: 2001, User’s Manual for WATEQ4F, with Revised Thermodynamics Data Base and Test Cases for Calculating Speciation of Major, Trace, and Redox Elements in Natural Waters, U.S. Geological Survey Open File Report 91–183, Menlo Park, California, 59 pp.

  • Barakat, S.: 2004, ‘Chromium distribution and speciation in river systems affected by tannery effluents in Veneto, Italy’, Ph.D. Thesis, University of the West of England, Bristol, 325 pp.

    Google Scholar 

  • Barakat, S. and Giusti, L.: 2003, ‘Chromium speciation in a river system in Veneto (Italy) affected by tannery effluent’, J. Phys. IV 107, 115–118.

    CAS  Google Scholar 

  • Beaubien, S., Nriagu, J., Bowles, D. and Lawson, G.: 1994, ‘Chromium speciation and distribution in the Great Lakes’, Environ. Sci. Technol. 28, 730–736.

    CAS  Google Scholar 

  • Comber, S. and Gardner, M.: 2003, ‘Chromium redox speciation in natural waters’, J. Environ. Monit. 5, 410–413.

    CAS  PubMed  Google Scholar 

  • Davison, W. and Zhang, H.: 1994, ‘In situ speciation measurements of trace components in natural waters using thin-film gels’, Lett. Nat. 367, 546–548.

    CAS  Google Scholar 

  • Eckert, J. M., Judd, R. J., Lay, P. A. and Symons, A. D.: 1991, ‘Response of chromium(V) to the diphenylcarbazide spectrophotometric method for the determination of chromium(VI)’, Anal. Chim. Acta 255, 31–33.

    CAS  Google Scholar 

  • Ernstberger, H., Zhang, H. and Davison, W.: 2002, ‘Determination of chromium speciation in natural systems using DGT’, Anal. Bioanal. Chem. 373, 873–879.

    CAS  PubMed  Google Scholar 

  • Fukushima, M., Nakayasu, K., Tanaka, S. and Nakamura, H.: 1995, ‘Chromium(III) binding abilities of humic acids’, Anal. Chim. Acta 317, 195–206.

    CAS  Google Scholar 

  • Gaberell, M., Chin, Y., Hug, S. J. and Sulzberger, B.: 2003, ‘Role of dissolved organic matter composition on the photoreduction of Cr(VI) to Cr(III) in the presence of iron’, Environ. Sci. Technol. 37, 4403–4409.

    CAS  PubMed  Google Scholar 

  • Galimowski, J., Valenta, P. and Nurnberg, H. W.: 1985, ‘Trace determination of chromium in various water types by adsorption differential pulse voltammetry’, Fresenius Z. Anal. Chem. 322, 315–322.

    Article  Google Scholar 

  • Garvan, F. L.: 1964, ‘Metal chelates of ethylenediaminetetraacetic acid and related substances’, in F. P. Dwyer and D. P. Mellor (eds.), Chelating Agents and Metal Chelates, Academic Press, New York, pp. 283–329.

    Google Scholar 

  • Hem, J. D.: 1977, ‘Reactions of metal ions at surfaces of hydrous iron oxide’, Geochim. Cosmochim. Acta 41, 527–538.

    CAS  Google Scholar 

  • Hiraide, M. and Mizuike, A.: 1989, ‘Separation and determination of chromium(VI) anions and Cr(III) associated with negatively charged colloids in river water by sorption on DEAE-Sephadex A25’, Fresenius Z. Anal. Chem. 335, 924–926.

    CAS  Google Scholar 

  • Hunt, D. T. E. and Hedgecott, S.: 1994, Revised Environmental Quality Standards for Chromium in Water, Final Report to the Department of the Environment, 79 pp.

  • James, B. R. and Bartlett, R. J.: 1983, ‘Behaviour of chromium in soils. V. Fate of organically complexed Cr(III) added to soils’, J. Environ. Qual. 12, 169–172.

    CAS  Google Scholar 

  • Korolczuk, M.: 2000, ‘Voltammetric determination of traces of Cr(VI) in the presence of Cr(III) and humic acid’, Anal. Chim. Acta 414, 165–171.

    CAS  Google Scholar 

  • Kotas, J. and Stasicka, Z.: 2000, ‘Chromium occurrence in the environment and methods of its speciation’, Environ. Pollut. 107, 263–283.

    CAS  PubMed  Google Scholar 

  • Langå, S.: 1980, ‘Chromium’, in H.A. Waldron (ed.), Metals in the Environment, Academic Press, London, pp. 111–132.

    Google Scholar 

  • Laxen, D. P. H. and Harrison, R. M.: 1981, ‘Cleaning methods for polythene containers prior to the determination of trace metals in freshwater samples’, Anal. Chem. 53, 345–350.

    CAS  Google Scholar 

  • Lin, C.: 2002, ‘The chemical transformations of chromium in natural waters – A model study’, Water Air Soil Pollut. 139, 137–158.

    CAS  Google Scholar 

  • McFaralane, M., Bowden, D. J. and Giusti, L.: 1992, ‘Some aspects of microbially-mediated Al mobility in weathering profiles in Malawi – The implications for groundwater quality’, in R. Guerrero and C. Pedrós-Alió (eds.), Proceedings of the Sixth International Symposium on Microbial Ecology (ISME), Barcelona, pp. 677–680.

  • Marques, M. J., Salvador, A., Morales-Rubio, A. and de la Guardia, M.: 2000, ‘Analytical methodologies for chromium speciation in solid matrices: A survey of literature’, Fresenius Z. Anal. Chem. 367, 601–613.

    CAS  Google Scholar 

  • Menden, E. E., Rutland, F. H. and Kallenberger, W. E.: 1990, ‘Determination of Cr(VI) in tannery waste by the chelation-extraction method’, J. Am. Leather Chem. Assoc. 85, 363–375.

    CAS  Google Scholar 

  • Nriagu, J. and Nieboer, E.: 1988, Chromium in the Natural and Human Environment, Wiley Interscience, New York, 571 pp.

    Google Scholar 

  • Oviedo, C. and Rodríguez, J.: 2003, ‘EDTA: The chelating agent under environmental scrutiny’, Quim. Nova 26, 901–905.

    CAS  Google Scholar 

  • Palmer, C. D. and Wittbrodt, P. R.: 1991, ‘Processes affecting the remediation of chromium contaminated sites’, Environ. Health Perspect. 92, 25–40.

    CAS  PubMed  Google Scholar 

  • Pawlisz, A. V., Kent, R. A., Schneider, U. A. and Jefferson, C.: 1996, ‘Canadian water quality guidelines for chromium’, Environ. Toxicol. Water Qual. 12, 123–184.

    Article  Google Scholar 

  • Pettine, M., Barra, I., Campanella, L. and Millero, F. J.: 1998, ‘Effects of metals on the reduction of chromium(VI) by hydrogen sulfide’, Water Res. 32, 2807–2813.

    CAS  Google Scholar 

  • Pettine, M. and Millero, F. J.: 1990, ‘Chromium speciation in seawater: Probable role of hydrogen peroxide’, Limnol. Oceanogr. 35, 730–736.

    CAS  Google Scholar 

  • Rai, D., Eary, L. E. and Zachara, J. M.: 1989, ‘Environmental chemistry of chromium’, Sci. Total Environ. 86, 15–23.

    CAS  PubMed  Google Scholar 

  • Rutland, F. H., Kallenberg, W. E., Menden, E. E. and Nazario, C. L.: 1991, ‘Chrome determination and its relevance to tannery waste’, Leather October, 53–57.

    Google Scholar 

  • Saleh, F. Y., Parkerton, T. F., Lewis, R. V., Huang, J. H. and Dickson, K. L.: 1989, ‘Kinetics of chromium transformations in the environment’, Sci. Total Environ. 86, 25–41.

    CAS  PubMed  Google Scholar 

  • Sangi, M. H., Halstead, M. J. and Hunter, K. A.: 2002, ‘Use of the diffusion gradient thin film method to measure trace metals in fresh waters at low ionic strength’, Anal. Chim. Acta 456, 241–251.

    CAS  Google Scholar 

  • Sirinawin, W. and Westerlung, S.: 1997, ‘Analysis and storage of sample for chromium determination in sewater’, Anal. Chim. Acta 356, 35–40.

    CAS  Google Scholar 

  • Smith, B., Breward, N., Crawford, M. B., Galimaka, D., Mushiri, S. M. and Reeder, S.: 1996, ‘The environmental geochemistry of aluminium in tropical terrains and its implications to health’, in J. D. Appleton, R. Fuge and G. J. H. McCall (eds.), Environmental Geochemistry and Health, Geological Society Special Publication 113, pp. 141–152.

  • Srivastava, S., Prakash, S. and Srivastava, M. M.: 1999, ‘Chromium mobilization and plant availability – The impact of organic complexing agents’, Plant Soil 212, 203–208.

    CAS  Google Scholar 

  • Tipping, E.: 1998, ‘Humic ion-binding Model VI: An improved description of the interactions of protons and metal ions with humic substances’, Aquat. Geochem. 4, 3–48.

    CAS  Google Scholar 

  • United States Environmental Protection Agency: 1998, ‘Toxicological review of hexavalent chromium’, [online]. Available: http:www.epa.gov/IRIS/toxreviews/cr6-toxf.pdf. [09/09/01].

  • Walsh, A. R. and O’Halloran, J.: 1996, ‘Chromium speciation in tannery effluent. I. An assessment of techniques and the role of organic Cr(III) complexes’, Water Res. 30, 2393–2400.

    CAS  Google Scholar 

  • Zhang, H. and Davison, W.: 1999, ‘Diffusional characteristics of hydrogels used in DGT and DET techniques’, Anal. Chim. Acta 398, 329–340.

    CAS  Google Scholar 

  • Zhang, H. and Davison, W.: 2000, ‘Direct in situ measurements of labile inorganic and organically bound metal species in synthetic solutions and natural waters using diffusive gradients in thin films’, Anal. Chem. 72, 4447–4457.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lorenzo Giusti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Giusti, L., Barakat, S. The Monitoring of Cr(III) and Cr(VI) in Natural Water and Synthetic Solutions: An Assessment of the Performance of the Dgt and Dpc Methods. Water Air Soil Pollut 161, 313–334 (2005). https://doi.org/10.1007/s11270-005-4719-3

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-005-4719-3

Keywords

Navigation