Skip to main content
Log in

Effects of Iron, Ammonium and Temperature on Microcystin Content by a Natural Concentrated Microcystis Aeruginosa Population

  • Published:
Water, Air, and Soil Pollution Aims and scope Submit manuscript

Abstract

We report results of a study conducted to evaluate effects of ammonium, iron and temperature on microcystins (MC) and proteins content in cultures of a natural Microcystis aeruginosa population, concentrated from a field sample of San Roque reservoir (Córdoba – Argentina).

Based on a previous field study, we tested two temperatures (20 and 28 C), two iron concentrations (1 μM and 10 μM) and two ammonium-nitrogen conditions (absence and 54 μM) in semi-continuous cultures.

Total MC (TMC = MC-LR + MC-RR) and protein content per cyanobacteria cell increased when Fe concentration was enlarged. However, the ratio TMC: protein was almost the same for both iron concentrations. Thus, a high level of iron enhances both protein and MC content in the same proportion.

TMC and protein content are significantly lowered in presence of 54 μM-N-ammonium. Additionally, the ratio TMC: protein is lowered by almost two folds in cultures having ammonium.

Increasing the temperature does not affect the protein content or TMC per cell. However, cultures carried out at 28 C maintain the same MC-LR: MC-RR ratio during all the studied period, while cultures developed at 20 C show that MC-RR content is increased by 82-fold after four growth cycles (20 days total), while MC-LR remain almost constant in the same time. As a result, in our case, different temperatures produce a significant change in the pattern of MC content but not in the content of TMC per cell.

The two-fold drop observed in MC content in presence of ammonium are within the range expected for physiological responses of cyanobacteria, raising questions on the probable inhibitory role of ammonium in MC production.

On the contrary, the 82-fold increase of MC-RR observed at 20 C exceed the effects attributable to a cell physiological response, and could be better explained by an ecological shift from the starting genotype composition. Metagenomics, or similar molecular techniques, would provide the necessary tools to elucidate the ecological effect of temperature on cyanobacteria populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amé, M. V., Díaz, M. P. and Wunderlin, D. A.: 2003, ‘Occurrence of toxic cyanobacterial blooms in San Roque Dam (Córdoba – Argentina): A field and chemometric study’, Environ. Toxicol. 18, 192–201.

    Google Scholar 

  • APHA (American Public Health Association), AWWA (American Water Works Association) and WEF (Water Environment Federation): 1998, Standard Methods for the Examination of Water and Wastewater 20th edition. L. S. Clesceri, A. H. Greenberg and A. D. Eaton (eds), American Public Health Association, Washington DC, 1025 pp.

    Google Scholar 

  • Bickel, H. and Lyck, S.: 2001, ‘Importance of energy charge for microcystin production’, in I. Chorus (ed), Cyanotoxins, Springer, Berlin, pp. 133–141.

    Google Scholar 

  • Böttcher, G., Chorus, I., Ewald, S., Hintze, T. and Walz, N.: 2001, ‘Light-limited growth and microcystin content of Planktothrix agardhii and Microcystis aeruginosa in turbidostats’, in I. Chorus (ed.), Cyanotoxins, Springer, Berlin, pp. 115–133.

    Google Scholar 

  • Bradford, M.: 1976, ‘A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding’, Anal. Biochem. 72, 248–254.

    Article  CAS  Google Scholar 

  • Carmichael, W. W.: 1996, ‘Toxic microcystis and the environment’, in M. F. Watanabe, K. Harada, W. W. Carmichael and H. Fujiki (eds.), Toxic Microcystis, CRC Press, Inc., Boca Raton, pp. 1–11.

    Google Scholar 

  • Chorus, I.: 2001, ‘Cyanotoxin occurrence in freshwaters – a summary of survey results from different countries’, in I. Chorus (ed.), Cyanotoxins, Springer, Berlin, pp. 75–82.

    Google Scholar 

  • Chorus, I., Niesel, V., Fastner, J., Wiedner, C., Nixdorf, B. and Lindenschmidt, K. E.: 2001, ‘Environmental factors and microcystin levels in waterbodies’, in I. Chorus (ed.), Cyanotoxins, Springer, Berlin, pp. 159–177.

    Google Scholar 

  • Christiansen, G., Fastner, J., Erhard, M., Börner, T. and Dittmann, E.: 2003, ‘Microcystin biosynthesis in Planktothrix: Genes, evolution, and manipulation’, J. Bacteriol. 185, 564–572.

    Google Scholar 

  • Codd, G. A. and Bell, S. G.: 1985, ‘Eutrophication and toxic cyanobacteria in freshwaters’, Water Pollut Control 84, 21–30.

    Google Scholar 

  • Codd, G. A. and Ponn, G. K.: 1988, ‘Cyanobacterial toxins’, in J. G. Gallon and L. J. Rogers (eds), Proc. Phytochem. Soc. Eur. 28. Oxford University Press, Oxford, pp. 283–296.

  • Codd, G. A., Bell, S. G., Kaya, K., Ward, C. G., Beattie, K. A. and Metcalf, J. S.: 1999, ‘Cyanobacterial toxins, exposure routes and human health’, Eur. Journal Phycol. 34, 405–415.

    Google Scholar 

  • Dittmann, E., Erhard, M., Tillet, D., Neilan, B. A., von Döhren, H. and Börner, T.: 2001, ‘Characterization of microcystin synthetase genes in Microcystis aeruginosa’, in I. Chorus (ed.), Cyanotoxins, Springer, Berlin, pp. 115–133.

    Google Scholar 

  • Dorigo, U., Volatierb, L. and Humberta, J.-F.: 2005, ‘Molecular approaches to the assessment of biodiversity in aquatic microbial communities’, Water Res. 39, 2207–2218.

    Article  CAS  Google Scholar 

  • Fastner, J., Erhard, M., Carmichael, W. W., Sun, F., Rinehart, K. L., Rönicke, H. and Chorus, I.: 1999, ‘Characterization and diversity of Microcystins in natural blooms and strains of the genera Microcystis and Planktothrix from German freshwaters’, Arch. Hidrobiol. 2, 147–163.

    Google Scholar 

  • Fastner, J., Erhard, M. and Neumann, U.: 2001, ‘Microcystin Variants in Microcystis and Planktothrix Dominated Field Samples’, in I. Chorus (ed.), Cyanotoxins, Springer, Berlin, pp. 148–152.

    Google Scholar 

  • Herrero, A., Muro-Pastor, A. M. J. and Flores, E.: 2001, ‘Nitrogen control in cyanobacteria’, J. Bacteriol. 183(2), 411–425.

    Article  CAS  Google Scholar 

  • Hesse, K. and Kohl, J. G.: 2001, ‘Effects of light and nutrient supply on growth and microcystin content of different strains of Microcystis aeruginosa’, in I. Chorus (ed), Cyanotoxins, Springer, Berlin, pp. 104–115.

    Google Scholar 

  • Kaebernick, M., Neilan, B. A., Börner, T. and Dittmann, E.: 2000, ‘Light and the transcriptional response of the microcystin biosynthesis gene cluster’, Appl. Environ. Microb. 66, 3387–3392.

    Google Scholar 

  • Kotai, J.: 1972, ‘Instructions for preparation of modified Z8 for algae, B-11/69’, Norwegian Institute for Water Research Publication, Blinderan, Oslo, 5.

  • Kurmayer, R., Christiansen, G. and Chorus, I.: 2003, ‘The abundance of microcystin-producing genotypes correlates positively with colony size in Microcystis sp. and determines its microcystin net production in Lake Wannsee’, Appl. Environ. Microbiol. 69, 787–795.

    CAS  Google Scholar 

  • Lawton, L., Marsalek, B., Padisák, J. and Chorus, I.: 1999, ‘Determination of cyanobacteria in the laboratory’, in I. Chorus and J. Bartram (eds), Toxic Cyanobacteria in Water. A Guide to Their Public Health Consequences, Monitoring and Management, E and FN Spon, London and New York, pp. 347–367.

    Google Scholar 

  • Lyck, S., Gjølme, N. and Utkilen, H.: 1996, ‘Iron starvation increases toxicity of Microcystis aeruginosa CYA 228/1 (Chroococcales, Cyanophyceae)’, Phycologia 35(6 Suppl), 120–124.

    Google Scholar 

  • Long, B. M., Jones G. J. and Orr, P. T.: 2001, ‘Cellular microcystin content in N-limited Microcystis aeruginosa can be predicted from growth rate’, Appl. Environ. Microbiol. 67, 278–283.

    CAS  Google Scholar 

  • Meriluoto, J.: 1997, ‘Chromatography of microcystins’, Anal. Chim. Acta 352, 277–298.

    Article  CAS  Google Scholar 

  • Oh, H. M., Lee, S. J., Jang, M. H. and Yoon, B. D.: 2000, ‘Microcystin production by Microcystis aeruginosa in a phosphorus-limited chemostat’, Appl. Environ. Microbiol. 66, 176–179.

    Article  CAS  Google Scholar 

  • Orr, P. T. and Jones, G. J.: 1998, ‘Relationship between microcystin production and cell division rates in nitrogen-limited Microcystis aeruginosa cultures’, Limnol. Oceanogr. 43, 1604–1614.

    Article  CAS  Google Scholar 

  • Park, H. D., Iwami, C., Watanabe, M. F., Harada, K. I., Okino, T. and Hayashi, H.: 1998, ‘Temporal variabilities of the concentration of intra- and extracellular microcystin and toxic Microcystis species in a hypertrophic lake, Lake Suwa, Japan (1991–1994)’, Environ. Toxicol. Water Qual. 13, 61–72.

    CAS  Google Scholar 

  • Pflugmacher, S., Codd, G. A. and Steinberg, C. E. W.: 1999, ‘Effects of the cyanobacterial toxin microcystin-LR on detoxication enzymes in aquatic plants’, Environ. Toxicol. 14, 111–115.

    Article  CAS  Google Scholar 

  • Pflugmacher, S. and Wiegand, C.: 2001, ‘Metabolism of microcystin-LR in aquatic organism’, in I. Chorus (ed.), Cyanotoxins, Springer, Berlin, pp. 257–260.

    Google Scholar 

  • Rapala, J., Sivonen, K., Lyra, C. and Niemelä, S. C.: 1997, ‘Variation of Microcystins, cyanobacterial hepatotoxins, in Anabaena spp. as function of growth stimuli’, Appl. Environ. Microbiol. 63, 2206–2212.

    CAS  Google Scholar 

  • Rapala, J. and Sivonen, K.: 1998, ‘Assessment of environmental conditions that favour hepatotoxic and neurtotoxic Anabaena spp. Strains in cultured under light-limitation at different temperatures’, Microbial. Ecol. 36, 181–192.

    Article  CAS  Google Scholar 

  • Rohrlack, T., Henning, M. and Kohl, J. G.: 2001, ‘Isolation and characterization of colony-forming Microcystis aerurinosa strains’, in I. Chorus (ed.), Cyanotoxins, Springer, Berlin, pp. 152–158.

    Google Scholar 

  • Sivonen, K.: 1996, ‘Cyanobacterial toxins and toxin production’, Phycologia 35(6 supplement), 12–24.

    Google Scholar 

  • Sivonen, K. and Jones, G.: 1999, ‘Cyanobacterial toxins’, in I. Chorus and J. Bartram (eds), Toxic Cyanobacteria in Water. A Guide to Their Public Health Consequences, Monitoring and Management, E and FN Spon, London and New York, pp. 41–111.

    Google Scholar 

  • Utkilen, H. and Gjølme, N.: 1992, ‘Toxin production by Microcystis aeruginosa as a function of light in continuous cultures and its ecological significance’, Appl. Environ. Microbiol. 58, 1321–1325.

    CAS  Google Scholar 

  • Utkilen, H. and Gjølme, N.: 1995, ‘Iron-stimulated toxin production in Microcystis aeruginosa’, Appl. Environ. Microb. 61, 797–800.

    CAS  Google Scholar 

  • Watanabe, M. F.: 1996, ‘Production of microcystins’, in M. F. Watanabe, K. Harada, W. W. Carmichael and H. Fujiki (eds), Toxic Microcystis, CRC Press, Inc. Boca Raton, pp. 35–56.

    Google Scholar 

  • Welker, M., Hoeg, S. and Steinberg, C.: 1999, ‘Hepatotoxic cyanobacteria in the shallow lake Müggelsee’, Hydrobiologia 408/409, 263–268.

    Google Scholar 

  • Welker, M., Steinberg, C. and Jones, G.: 2001, ‘Release and persistence of microcystins in natural waters’, in I. Chorus (ed.), Cyanotoxins, Springer, Berlin, pp. 83–99.

    Google Scholar 

  • Xie; L., Xie, P., Li, S., Tang, H. and Liu, H.: 2003, ‘The low TN:TP ratio, a cause or a result of Microcystis blooms?’, Water Res. 37, 2073–2080.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Alberto Wunderlin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Amé, M.V., Wunderlin, D.A. Effects of Iron, Ammonium and Temperature on Microcystin Content by a Natural Concentrated Microcystis Aeruginosa Population. Water Air Soil Pollut 168, 235–248 (2005). https://doi.org/10.1007/s11270-005-1774-8

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-005-1774-8

Keywords

Navigation