Skip to main content
Log in

Efficiency of Artificial Groundwater Recharge, Quantification Through Conceptual Modelling

  • Published:
Water Resources Management Aims and scope Submit manuscript

Abstract

The El Khairat wadi was dammed in order to improve the water resources management of El Khairat plain by increasing the surface water mobilization and using the stored reservoir water mainly for artificial groundwater recharge. Reservoir-type conceptual modelling was used to estimate the groundwater recharge over periods pre and post-dam construction. The comparison of the aquifer recharge in natural and artificialized regimes allowed to assess the artificial recharge efficiency. The mean groundwater recharge by the El Khairat wadi calculated over the period prior to the dam construction (1984–1997) is 10.5\(\times\)106 m3/year, corresponding to a mean infiltration rate equaled to 17% of the annual rainfall. The median value is 5.6\(\times\)106m3/year. After the dam construction, the annual recharge averaged over the period (2002–2015) is 2.8×106 m3 corresponding to an infiltration rate varying between 40% and 80% of the released water. In spite the high infiltration rate, this average value is low in comparison with the natural recharge, due to the absence of regular artificial recharge campaigns. In post-dam construction, the artificial recharge rate slightly exceeded the renewable groundwater resources only in 3 years. The initial piezometric state observed in the late 1970s is not restored although the impact of artificial groundwater recharge operations is perceptible in piezometers situated in the close vicinity of the wadi. Regular recharge operations by releases with a flood discharge rate of around 75 l/s are recommended to ensure high yield of the artificial groundwater recharge and accordingly good management of groundwater resources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Arnold JG, Srinivasan R, Muttiah RS, Williams JR (1998) Large area hydrologic modeling and assessment—Part 1: Model development. J Am Water Resour Assoc 34:73–89

    Article  Google Scholar 

  • Ayadi M (2017) Stratégie de mobilisation des ressources en eau en Tunisie. [Water resources mobilization strategy in Tunisia]. DGRE, Tunisia, 26p

  • Bergström S (1976) Development and application of a conceptual runoff model for Scandinavian catchments. SMHI, RHO No. 7, Norrköping, 134p

  • Beven KJ, Kirkby MJ (1979) A Physically Based Variable Contributing Area Model of Basin Hydrology. Hydrol Sci Bull 24:43–69

    Article  Google Scholar 

  • Brini N (2018) Recharge naturelle et artificielle des nappes en région semi-aride et aride: cas des bassins versants Oum Ettamer-El Fjé (Sud tunisien) et El Khairat (Tunisie centrale). [Natural and artificial recharge of aquifers in semi-arid and arid regions: case study of the watersheds Oum Ettamer-El Fjé (South Tunisia) and El Khairat (Central Tunisia).]. Doc. Thesis. FST, Univ. Tunis El Manar. 198p

  • Brini N, Zammouri M (2016) Groundwater recharge modelling in semi-arid regions; a case study of El Khairat alluvial plain (Tunisia). QJEGH 49(3):229–236. https://doi.org/10.1144/qjegh2015-084

    Article  Google Scholar 

  • BRLIngénierie (2016) Gestion des ressources en eau souterraines comme biens communs [Management of groundwater resources as a common asset]. Technical reports, AFD Pub. 234p

  • Dassi L, Zouari K, Faye S (2005) Identifying sources of groundwater recharge in the Merguellil basin (Tunisia) using isotopic methods: implication of dam reservoir water accounting. Environ Geol 49:114–123

    Article  Google Scholar 

  • DHI (2004) The MIKE SHE User Reference. DHI Water and Envirmont. Horsholm, Denmark, 462p

  • Gosain AK, Mani A, Dwivedi C (2009) Hydrological Modelling-Literature Review. Climawater, Report NO.1

  • Hashemi H, Berndtsson M, Kompani-Zare R, Persson M (2013) Natural vs. artificial groundwater recharge, quantification through inverse modeling. Hydrol Earth Syst Sci 17:637–650. https://doi.org/10.5194/hess-17-637-2013

    Article  Google Scholar 

  • Healy R, Cook P (2002) Using groundwater levels to estimate recharge. Hydrogeol J 10:91–109. https://doi.org/10.1007/s10040-001-0178-0

    Article  Google Scholar 

  • Hernandez M (2000) Modeling runoff response to land cover and rainfall spatial variability in semi-arid watersheds. Environ Monit Assess 64:285–298

    Article  Google Scholar 

  • Hughes DA (1995) Monthly rainfall–runoff models applied to arid and semi arid catchments for water resource estimation purposes. Hydrol Sci J 40(6):751–769

    Article  Google Scholar 

  • Ibn Ali Z, Zairi M (2018) Efficiency of Aquifer Artificial Recharge from Hill Dam by Analytical Method. In: Kallel A, Ksibi M, Ben Dhia H, Khélifi N (eds) Recent Advances in Environmental Science from the Euro-Mediterranean and Surrounding Regions. EMCEI 2017. Advances in Science, Technology & Innovation. Springer, Cham (IEREK Interdisciplinary Series for Sustainable Development)

  • Ibn Ali Z, Gharbi A, Kallel A, Ghzel L, Zairi M (2019) Efficiency of the groundwater artificial recharge from dam water release in arid area. Int J Water 13(1):12. https://doi.org/10.1504/IJW.2019.097312

  • Jajarmizadeh M, Harun S, Salarpour M (2012) A Review on Theoretical Consideration and Types of Models in Hydrology. J Environ Sci Technol 5(5):249–261. https://doi.org/10.3923/jest.2012.249.261

    Article  Google Scholar 

  • Jakeman AJ, Littlewood IG, Whitehead PG (1990) Computation of the instantaneous unit hydrograph and identifiable component flows with application to two small upland catchments. J Hydrol 117:275–300

    Article  Google Scholar 

  • Kallel MR (1992) Caractéristique hydrologique de l’oued El Khairat. [Hydrological characteristics of El Khairat wadi.]. DGRE, Ministry of Agriculture, Tunis, Tunisia

    Google Scholar 

  • Krause P, Boyle DP, Bäse F (2005) Comparison of different efficiency criteria for hydrological model assessment. Adv Geosci 5:89–97. https://doi.org/10.5194/adgeo-5-89-2005

    Article  Google Scholar 

  • Linsley RK, Crawford NH (1960) Computation of a synthetic streamflow record on a digital computer. IAHS Publ 51:526–538

    Google Scholar 

  • Manaa M, Chaieb H, Amri R (1996) Etude par modèle hydrogéologique de la nappe alluviale de l’oued El Khairat [Hydrogeological modelling of alluvial Wadi El Khairat aquifers]. DGRE. Ministry of Agriculture, Tunisia

    Google Scholar 

  • MARHP (Ministère de l’Agriculture, des Ressources Hydrauliques et de la Pêche) (2017) Rapport national du secteur de l’eau. [National Water Sector Report]. Bureau de la Planification et des Equilibres Hydrauliques, Tunisia, 153p

  • McKee TB, Doesken NJ, Kleist J (1993) The relationship of drought frequency and duration to time scales. In: Proceedings of the Eighth Conference on Applied Climatology, 17–22 January, American Meteorological Society, Anaheim, 179–186. http://ccc.atmos.colostate.edu/relationshipofdroughtfrequency.pdf

  • Mockler EM, Chun KP, Sapriza-Azuri G, Bruen M, Wheater HS (2016) Assessing the relative importance of parameter and forcing uncertainty and their interactions in conceptual hydrological model simulations. Adv Water Resour 97:299–313

    Article  Google Scholar 

  • Nagelkerke NJD (1991) A Note on a General Definition of the Coefficient of Determination. Biometrika 78(3):691–692

    Article  Google Scholar 

  • Nash JE (1957) The form of the instantaneous unit hydrograph. Int Assoc Sci Hydrol, Gen. Assess. Torento, pp 114–121

  • Nash JE, Sutcliffe JV (1970) River flow forecasting through conceptual models. Part I: A discussion of principles. J Hydrol 10:282–290

    Article  Google Scholar 

  • Pechlivanidis IG, Jackson BM, McIntyre NR, Wheater HS (2011) Catchment scale hydrological modelling: a review of model types, calibration approaches and uncertainty analysis methods in the context of recent developments in technology and applications. Global Nest J 13:193–214

    Google Scholar 

  • Perrin C, Michel C, Andréassian V (2003) Improvement of a parsimonious model for streamflow simulation. J Hydrol 279:275–289

    Article  Google Scholar 

  • Sahtout N, El Amri A, Fourati M, Majdoub R (2015) Les Facteurs de la Pauvreté Hydrique du Grand Sousse: Un Déséquilibre en eau Agricole en Perspective? [The factors of water poverty in Greater Sousse: an agricultural water imbalance in perspective?]. Eur J Sci Res 136(3):320–335

    Google Scholar 

  • Selvam S, Dar FA, Magesh NS, Singaraja C, Venkatramanan S, Chung SY (2015) Application of remote sensing and GIS for delineating groundwater recharge potential zones of Kovilpatti Municipality, Tamil Nadu using IF technique. Earth Sci Inform. https://doi.org/10.1007/s12145-015-0242-

    Article  Google Scholar 

  • Singh VP, Frevert DK (eds) (2002a) Mathematical Models of Small Watershed Hydrology and Applications. Water Resources Publications, Highlands Ranch

    Google Scholar 

  • Singh VP, Frevert DK (eds) (2002b) Mathematical Models of Large Watershed Hydrology. Water Resources Publications, Highlands Ranch

    Google Scholar 

  • Sophocleous MA (1991) Combining the soil water balance and water-level fluctuation methods to estimate natural groundwater recharge: practical aspects. J Hydrol 124:229–241

    Article  Google Scholar 

  • Toumia ML (1979) Epandage des eaux de crues. Cas de deux aménagements dans la zone semi-aride de la Tunisie [Flood water application. Two case studies in the semi-arid zone of Tunisia]. Rap. Stage. INAT-ORSTOM. Tunisia

  • van Esse WR, Perrin C, Booij MJ, Augustijn DCM, Fenicia F, Kavetski D, Lobligeois F (2013) The influence of conceptual model structure on model performance. Hydrol Earth Syst Sci 17:4227–4239. https://doi.org/10.5194/hess-17-4227-2013

    Article  Google Scholar 

  • Wang Z, Batelaan O, De Smedt F (1996) A distributed model for water and energy tranfer between soil, plants and atmosphere (WetSpas). Phys Chem Earth 21:189–193

    Article  Google Scholar 

  • Xi C, Zhang Z, Zhang X, Chen Y, Qian M, Peng S (2008) Estimation of groundwater recharge from precipitation and evapotranspiration by lysimeter measurement and soil moisture model. J Hydrol Eng 13(50):333–340

    Google Scholar 

  • Zammouri M, Feki H (2005) Managing releases from small upland reservoirs for downstream recharge in semi-arid basins (Northeast of Tunisia). J Hydrol 314:125–138

  • Zammouri M, Jarraya-Horriche F, Odo BO, Benabdallah S (2013) Assessment of the effect of a planned marina on groundwater quality in Enfida plain (Tunisia). Arab J Geosci :1–17

  • Zammouri M, Brini N, Horriche J, F (2018) Assessment of Artificial Recharge Efficiency Against Groundwater Stress in the El Khairat Aquifer. In: Calvache M, Duque C, Pulido-Velazquez D (eds) Groundwater and Global Change in the Western Mediterranean Area. Environmental Earth Sciences. Springer, Cham, pp 305–312. https://doi.org/10.1007/978-3-319-69356-9_35

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mounira Zammouri.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zammouri, M., Brini, N. Efficiency of Artificial Groundwater Recharge, Quantification Through Conceptual Modelling. Water Resour Manage 34, 3345–3361 (2020). https://doi.org/10.1007/s11269-020-02617-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11269-020-02617-1

Keywords

Navigation