Skip to main content
Log in

Development of a Glacio-hydrological Model for Discharge and Mass Balance Reconstruction

  • Published:
Water Resources Management Aims and scope Submit manuscript

Abstract

The reconstruction of glacio-hydrological records for the data deficient Himalayan catchments is needed in order to study the past and future water availability. The study provides outcomes of a glacio-hydrological model based on the degree-day approach. The model simulates the discharge and mass balance for glacierised Shaune Garang catchment. The degree-day factors for different land covers, used in the model, were estimated using daily stake measurements on Shaune Garang glacier and they were found to be varying between 2.6 ± 0.4 and 9.3 ± 0.3 mm °C−1day−1. The model is validated using observed discharge during ablation season of 2014 with coefficient of determination (R2) 0.90 and root mean square error (RMSE) 1.05 m3 sec−1. The model is used to simulate discharge from 1985 to 2008 and mass balance from 2001 to 2008. The model results show significant contribution of seasonal snow and ice melt in total discharge of the catchment, especially during summer. We observe the maximum discharge in July having maximum contribution from snow and ice melt. The annual melt season discharge shows following a decreasing trend in the simulation period. The reconstructed mass balance shows mass loss of 0.89 m we per year between 2001 and 2008 with slight mass gain during 2000/01 and 2004/05 hydrological years.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Andermann C, Stephane B, Richard G (2011) Evaluation of precipitation data sets along the Himalayan front. Geochem Geophys Geosyst 12(7):Q07023. doi:10.1029/2011GC003513

    Article  Google Scholar 

  • Archer DR, Fowler HJ (2004) Spatial and temporal variations in precipitation in the upper Indus basin, global teleconnections and hydrological implications. Hydrol Earth Syst Sci 8:47–61. doi:10.5194/hess-8-47-2004

    Article  Google Scholar 

  • Arora M, Singh P, Goel NK, Singh RD (2006) Spatial distribution and seasonal variability of rainfall in a mountainous basin in the Himalayan region. Water Resour Manag 20(4):489–508. doi:10.1007/s11269-006-8773-4

    Article  Google Scholar 

  • Arora M, Singh P, Goel NK, Singh RD (2008) Climate variability influences on hydrological responses of a large Himalayan basin. Water Resour Manag 22(10):1461–1475. doi:10.1007/s11269-007-9237-1

    Article  Google Scholar 

  • Azam MF, Wagnon P, Ramanathan AL, Vincent C, Sharma P, Arnaud Y, Linda A, Pottakkal JG, Chevallier P, Singh VB, Berthier E (2012) From balance to imbalance: a shift in the dynamic behaviour of Chhota Shigri glacier, western Himalaya, India. J Glaciol 58(208):315–324. doi:10.3189/2012JoG11J123

    Article  Google Scholar 

  • Azam MF, Wagnon P, Vincent C, Ramanathan AL, Favier V, Mandal A, Pottakkal JG (2014a) Processes governing the mass balance of Chhota Shigri Glacier (western Himalaya, India) assessed by point-scale surface energy balance measurements. Cryosphere 8:2195–2217. doi:10.5194/tc-8-2195-2014

    Article  Google Scholar 

  • Azam MF, Wagnon P, Vincent C, Ramanathan AL, Linda A, Singh VB (2014b) Reconstruction of the annual mass balance of Chhota Shigri glacier, Western Himalaya, India, since 1969. Ann Glaciol 55(66):69–80. doi:10.3189/2014AoG66A104

    Article  Google Scholar 

  • Bajracharya SR, Shrestha B (eds) (2011) The status of glaciers in the Hindu Kush-Himalayan region. International Centre for Integrated Mountain Development (ICIMOD), Kathmandu

  • Basistha A, Arya DS, Goel NK (2008) Spatial distribution of rainfall in Indian Himalayas—a case study of Uttarakhand region. Water Resour Manag 22(10):1325–1346. doi:10.1007/s11269-007-9228-2

    Article  Google Scholar 

  • Bhutiyani MR, Kale VS, Pawar NJ (2007) Long-term trends in maximum, minimum and mean annual air temperatures across the Northwestern Himalaya during the twentieth century. Clim Change 85(1):159–177. doi:10.1007/s10584-006-9196-1

    Article  Google Scholar 

  • Bhutiyani MR, Kale VS, Pawar NJ (2010) Climate change and the precipitation variations in the Northwestern Himalaya: 1866–2006. Int J Climatol 30(4):535–548. doi:10.1002/joc.1920

    Google Scholar 

  • Bøggild CE, Reeh N, Oerter H (1994) Modelling ablation and mass-balance sensitivity to climate change of Storstrømmen, northeast Greenland. Global Planet Change 9(1–2):79–90. doi:10.1016/0921-8181(94)90009-4

    Article  Google Scholar 

  • Bolch T, Kulkarni AV, Kääb A, Huggel C, Paul F, Cogley JG, Frey H, Kargel JS, Fujita K, Scheel M, Bajracharya S, Stoffel M (2012) The state and fate of Himalayan glaciers. Science 336(6079):310–314. doi:10.1126/science.1215828

    Article  Google Scholar 

  • Bookhagen B, Burbank DW (2010) Toward a complete Himalayan hydrological budget: spatiotemporal distribution of snowmelt and rainfall and their impact on river discharge. J Geophys Res 115:F03019. doi:10.1029/2009jf001426

    Article  Google Scholar 

  • Braithwaite RJ, Zhang Y (1999) Modelling changes in glacier mass balance that may occur as a result of climate changes. Geogr Ann Ser A Phys Geogr 81(4):489–496. doi:10.1111/1468-0459.00078

    Article  Google Scholar 

  • Cea C, Cristóbal J, Pons X (2007) An improved methodology to map snow cover by means of Landsat and MODIS imagery. IEEE Int Geosci Remote Sens Symp (IGRASS) pp 4217–4220

  • Dimri AP, Dash SK (2012) Wintertime climatic trends in the Western Himalaya. Clim Change 111(3–4):775–800. doi:10.1007/s10584-011-0201-y

    Article  Google Scholar 

  • Fujita K, Ageta Y (2000) Effect of summer accumulation on glacier mass balance on the Tibetan Plateau revealed by mass balance model. J Glaciol 46(153):244–252. doi:10.3189/172756500781832945

    Article  Google Scholar 

  • Gardelle J, Berthier E, Arnaud Y, Kääb A (2013) Region-wide glacier mass balances over the Pamir–Karakoram–Himalaya during 1999–2011. Cryosphere 7(4):1263–1286. doi:10.5194/tc-7-1263-2013

    Article  Google Scholar 

  • Garg V, Jothiprakash V (2012) Sediment Yield Assessment of a Large Basin using PSIAC Approach in GIS Environment. Water Resour Manag 26(3):799–840. doi:10.1007/s11269-011-9945-4

    Article  Google Scholar 

  • Gudmundsson L, Bremnes JB, Haugen JE, Engen-Skaugen T (2012) Technical note: downscaling RCM precipitation to the station scale using statistical transformations—a comparison of methods. Hydrol Earth Syst Sci 16:3383–3390. doi:10.5194/hess-16-3383-2012

    Article  Google Scholar 

  • Hall DK, Riggs GA (2007) Accuracy assessment of the MODIS snow products. Hydrol Process 21(12):1534–1547. doi:10.1002/hyp.6715

    Article  Google Scholar 

  • Herschy R (1993) The velocity-area method. Flow Meas Instrum 4(1):7–10. doi:10.1016/0955-5986(93)90004-3

    Article  Google Scholar 

  • Heucke E (1999) A light portable steam-driven ice drill suitable for drilling holes in ice and firn. Geogr Ann Ser A Phys Geogr 81(4):603–609. doi:10.1111/1468-0459.00088

    Article  Google Scholar 

  • Hock R (2003) Temperature index melt modelling in mountain areas. J Hydrol 282(1–4):104–115. doi:10.1016/S0022-1694(03)00257-9

    Article  Google Scholar 

  • Immerzeel WW, Van Beek LPH, Bierkens MFP (2010) Climate change will affect the Asian water towers. Science 328:1382–1385. doi:10.1126/science.1183188

    Article  Google Scholar 

  • Jain SK, Singh P, Saraf AK, Seth SM (2003) Estimation of sediment yield for a rain, snow and glacier fed river in the Western Himalayan region. Water Resour Manag 17(5):377–393. doi:10.1023/A:1025804419958

    Article  Google Scholar 

  • Jain SK, Goswami A, Saraf AK (2009) Role of elevation and aspect in snow distribution in Western Himalaya. Water Resour Manag 23(1):71–83. doi:10.1007/s11269-008-9265-5

    Article  Google Scholar 

  • Jain SK, Goswami A, Saraf AK (2010) Assessment of snowmelt runoff using remote sensing and effect of climate change on runoff. Water Resour Manag 24(9):1763–1777. doi:10.1007/s11269-009-9523-1

    Article  Google Scholar 

  • Juen M, Mayer C, Lambrecht A, Han H, Liu S (2014) Impact of varying debris cover thickness on ablation: a case study for Koxkar Glacier in the Tien Shan. Cryosphere 8(2):377–386. doi:10.5194/tc-8-377-2014

    Article  Google Scholar 

  • Kääb A, Berthier E, Nuth C, Gardelle J, Arnaud Y (2012) Contrasting patterns of early twenty-first-century glacier mass change in the Himalayas. Nature 488(7412):495–498. doi:10.1038/nature11324

    Article  Google Scholar 

  • Kayastha RB, Ohata T, Ageta Y (1999) Application of mass balance model to a Himalayan glacier. J Glaciol 45:559–567

    Google Scholar 

  • Krakauer NY, Pradhanang SM, Lakhankar T, Jha AK (2013) Evaluating satellite products for precipitation estimation in mountain regions: a case study for Nepal. Remote Sens 5:4107–4123. doi:10.3390/rs5084107

    Article  Google Scholar 

  • Lejeune Y, Bertrand JM, Wagnon P and Samuel M (2013) A physically based model of the year-round surface energy and mass balance of debris-covered glaciers. J Glaciol 59(214):327–344. doi:10.3189/2013JoG12J149

  • Li H, Xu C-Y, Beldring S, Tallaksen LM, Jain SK (2015) Water resources under climate change in Himalayan basins. Water Resour Manag. doi:10.1007/s11269-015-1194-5

    Google Scholar 

  • Liu X, Chen B (2000) Climatic warming in the Tibetan plateau during recent decades. Int J Climatol 20(14):1729–1742. doi:10.1002/1097-0088(20001130)20:14<1729::AID-JOC556>3.0.CO;2-Y

    Article  Google Scholar 

  • Lutz AF, Immerzeel WW, Shrestha AB, Bierkens MFP (2014) Consistent increase in High Asia's runoff due to increasing glacier melt and precipitation. Nat Clim Chang 4:587–592. doi:10.1038/nclimate2237

    Article  Google Scholar 

  • Mayewski PA, Jeschke PA (1979) Himalayan and Trans-Himalayan glacier fluctuations since Ad 1812. Arct Alp Res 11(3):267–287

    Article  Google Scholar 

  • Mölg T, Maussion F, Yang W, Scherer D (2012) The footprint of Asian monsoon dynamics in the mass and energy balance of a Tibetan glacier. Cryosphere 6:1445–1461. doi:10.5194/tc-6-1445-2012

    Article  Google Scholar 

  • Nicholson L, Benn DI (2006) Calculating ice melt beneath a debris layer using meteorological data. J Glaciol 52(178):463–470. doi:10.3189/172756506781828584

    Article  Google Scholar 

  • Ohmura A (2001) Physical basis for the temperature-based melt index method. J Appl Meteorol 40(4):753–761. doi:10.1175/1520-0450)(2001)040<0753:PBFTTB>2.0.CO;2

    Article  Google Scholar 

  • Ohmura A, Bauder A, Müller H, Kappenberger G (2007) Long term change of mass balance and the role of radiation. Ann Glaciol 46:367–374. doi:10.3189/172756407782871297

    Article  Google Scholar 

  • Panday PK, Christopher AW, Frey KE, Brown ME (2014) Application and evaluation of a snowmelt runoff model in the Tamor River basin, Eastern Himalaya using a Markov Chain Monte Carlo (MCMC) data assimilation approach. Hydrol Process 28(21):5337–5353. doi:10.1002/hyp.10005

    Article  Google Scholar 

  • Pandey P, Venkataraman G (2013) Changes in the glaciers of Chandra-Bhaga basin, Himachal Himalaya, India, between 1980 and 2010 measured using remote sensing. Int J Remote Sens 34(15):5584–5597. doi:10.1080/01431161.2013.793464

    Article  Google Scholar 

  • Pradhananga NS, Kayastha RB, Bhattarai BC, Adhikari TR, Pradhan SC, Devkota LP, Shrestha AB, Mool PK (2014) Estimation of discharge from Langtang River basin, Rasuwa, Nepal, using a glacio-hydrological model. Ann Glaciol 55(66):223–230. doi:10.3189/2014AoG66A123223

    Article  Google Scholar 

  • Pratap B, Dobhal DP, Mehta M, Bhambri R (2015) Influence of debris cover and altitude on glacier surface melting: a case study on Dokriani Glacier, Central Himalaya, India. Ann Glaciol 56(70):9–16. doi:10.3189/2015AoG70A971

  • Raina VK, Srivastava D, Singh RK, Sangewar CV (2008) Glacier regimen, fluctuation, hydrometry and mass transfer studies in the Himalayas. In: Raina VK, Srivastava D (eds) Glacier Atlas of India. Geological Society of India, Bangalore, pp 206–216

    Google Scholar 

  • Schild A (2008) The case of the Hindu Kush–Himalayas: ICIMOD’s position on climate change and mountain systems. Mt Res Dev 28(3/4). doi:10.1659/mrd.mp009

  • Shea JM, Immerzeel WW, Wagnon P, Vincent C, Bajracharya S (2015) Modelling glacier change in the Everest region, Nepal Himalaya. Cryosphere 9(3–3):1105–1128. doi:10.5194/tc-9-1105-2015

    Article  Google Scholar 

  • Shrestha AB, Wake CP, Mayewski PA, Dibb JE (1999) Maximum temperature trends in the Himalaya and its vicinity: an analysis based on temperature records from Nepal for the period 1971–94. J Climate 12:2775–2767. doi:10.1175/1520-0442(1999)012%3C2775:MTTITH%3E2.0.CO;2

    Article  Google Scholar 

  • Shrestha AB, Wake CP, Dibb JE, Mayewski PA (2000) Precipitation fluctuations in the Nepal Himalaya and its vicinity and relationship with some large scale climatological parameters. Int J Climatol 20(3):317–327. doi:10.1002/(SICI)1097-0088(20000315)20:3<317::AID-JOC476>3.0.CO;2-G

    Article  Google Scholar 

  • Singh P (2001) Hydrological modelling of snow and glacier covered basins. Proc Natl Acad Sci India A 71:195–222

    Google Scholar 

  • Singh P, Bengtsson L (2003) Effect of warmer climate on the depletion of snow covered area in the Satluj basin in the western Himalayan region. Hydrol Sci J 48(3):413–425. doi:10.1623/hysj.48.3.413.45280

    Article  Google Scholar 

  • Singh P, Jain SK (2003) Modelling of streamflow and its components for a large Himalayan basin with predominant snowmelt yields. Hydrol Sci J 48(2):257–276. doi:10.1623/hysj.48.2.257.44693

    Article  Google Scholar 

  • Singh P, Haritashya UK, Kumar N (2008) Modelling and estimation of different components of streamflow for Gangotri Glacier basin, Himalayas. Hydrol Sci J 53(2):309–322. doi:10.1623/hysj.53.2.309

    Article  Google Scholar 

  • Singh S, Kumar R, Bhardwaj A, Sam L, Shekhar M, Singh A, Kumar R and Gupta A (2016) Changing climate and glacio-hydrology in Indian Himalayan Region: a review. Wiley Interdiscip Rev Clim Change 7(3):393–410. doi:10.1002/wcc.39

  • Srivastava D, Kumar A, Verma A, Swaroop S (2014) Analysis of climate and melt-runoff in Dunagiri Glacier of Garhwal Himalaya (India). Water Resour Manag 28(10):3035–3055. doi:10.1007/s11269-014-0653-8

    Article  Google Scholar 

  • Subramanya K (1994) Engineering hydrology, 2nd edn. Tata McGraw-Hill Education, New Delhi

    Google Scholar 

  • Thayyen RJ, Gergan JT (2010) Role of glaciers in watershed hydrology: a preliminary study of a ‘Himalayan catchment’. Cryosphere 4(1):115–128. doi:10.5194/tc-4-115-2010

    Article  Google Scholar 

  • Tiwari PC, Joshi B (2012) environmental changes and sustainable development of water resources in the Himalayan headwaters of India. Water Resour Manag 26(4):883–907. doi:10.1007/s11269-011-9825-y

    Article  Google Scholar 

  • Vincent C, Al R, Wagnon P, Dobhal DP, Linda A, Berthier E, Sharma P, Arnaud Y, Azam MF, Jose PG, Gardelle J (2013) Balanced conditions or slight mass gain of glaciers in the Lahaul and Spiti region (northern India, Himalaya) during the nineties preceded recent mass loss. Cryosphere 7(2):569–582. doi:10.5194/tc-7-569-2013

    Article  Google Scholar 

  • Xu J, Grumbine RE, Shrestha A, Eriksson M, Yang X, Wang Y, Wilkes A (2009) The melting Himalaya: cascading effects of climate change on water, biodiversity, and livelihoods. Conserv Biol 23(3):520–530. doi:10.1111/j.1523-1739.2009.01237.x

    Article  Google Scholar 

  • Yatagai A, Kamiguchi K, Arakawa O, Hamada A, Yasutom N, Kitoh A (2012) APHRODITE: constructing a long-term daily gridded precipitation dataset for Asia based on a dense network of rain gauges. Bull Am Meteorol Soc 93(9):1401–1415. doi:10.1175/BAMS-D-11-00122.1

    Article  Google Scholar 

  • Zhang G, Kang S, Fujita K, Huintjes E, Xu J, Yamazaki T, Haginoya S, Wei Y, Scherer D, Schneider C, Yao T (2013) Energy and mass balance of Zhadang glacier surface, central Tibetan Plateau. J Glaciol 59(213):137–148. doi:10.3189/2013JoG12J152

Download references

Acknowledgments

The study is a part of internationally coordinated project entitled “Contribution to High Asia Runoff from Ice and Snow (CHARIS) https://nsidc.org/charis/” funded by United States Agency for International Development (USAID). The authors are grateful to Bhakhra Beas Management Board (BBMB) and Dr. Hendrik Wulf, University of Zurich, Switzerland for providing meteorological data of Rakchham and Chhitkul. The support provided by Mr. Vinod Negi, Rakchham, H.P. in carrying out field work is deeply acknowledged. We would also like to thank Dr. George P. Tsakiris, Chief Editor, Water Resources Management and two anonymous reviewers for the comments which significantly improved the quality of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaktiman Singh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, R., Singh, S., Kumar, R. et al. Development of a Glacio-hydrological Model for Discharge and Mass Balance Reconstruction. Water Resour Manage 30, 3475–3492 (2016). https://doi.org/10.1007/s11269-016-1364-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11269-016-1364-0

Keywords

Navigation