Skip to main content
Log in

Tubular Structure Segmentation Based on Minimal Path Method and Anisotropic Enhancement

  • Published:
International Journal of Computer Vision Aims and scope Submit manuscript

Abstract

We present a new interactive method for tubular structure extraction. The main application and motivation for this work is vessel tracking in 2D and 3D images. The basic tools are minimal paths solved using the fast marching algorithm. This allows interactive tools for the physician by clicking on a small number of points in order to obtain a minimal path between two points or a set of paths in the case of a tree structure. Our method is based on a variant of the minimal path method that models the vessel as a centerline and surface. This is done by adding one dimension for the local radius around the centerline. The crucial step of our method is the definition of the local metrics to minimize. We have chosen to exploit the tubular structure of the vessels one wants to extract to built an anisotropic metric. The designed metric is well oriented along the direction of the vessel, admits higher velocity on the centerline, and provides a good estimate of the vessel radius. Based on the optimally oriented flux this measure is required to be robust against the disturbance introduced by noise or adjacent structures with intensity similar to the target vessel. We obtain promising results on noisy synthetic and real 2D and 3D images and we present a clinical validation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Benmansour, F. (2009). Minimal path method applied to medical imaging: tubular structure and surface segmentation using multi-scaled anisotropy and recursive keypoints detection. Ph.D. Thesis, Université Paris Dauphine.

  • Benmansour, F., & Cohen, L.D. (2009). Tubular anisotropy segmentation. In SSVM (pp. 14–25).

  • Bornemann, F., & Rasch, C. (2006). Finite-element discretization of static Hamilton-Jacobi equations based on a local variational principle. Computing and Visualization in Science, 9(2).

  • Caselles, V., Kimmel, R., & Sapiro, G. (1995). Geodesic active contours. In IEEE international conference in computer vision (ICCV’95) (pp. 694–699).

  • Caselles, V., Kimmel, R., & Sapiro, G. (1997). Geodesic active contours. International Journal of Computer Vision, 22, 61–79.

    Article  MATH  Google Scholar 

  • Chan, T. F., & Vese, L. A. (2001). Active contours without edges. IEEE Transactions on Image Processing, 10(2), 266–277.

    Article  MATH  Google Scholar 

  • Chern, S.-S. (1996). Finsler geometry is just Riemannian geometry without the quadratic restriction. Notices of the American Mathematical Society, 43, 959–963.

    MathSciNet  MATH  Google Scholar 

  • Chopp, D. L. (2001). Replacing iterative algorithms with single-pass algorithms. Proceedings of the National Academy of Science of the USA, 98(20), 10992–10993.

    Article  Google Scholar 

  • Cohen, L. D., & Deschamps, T. (2007). Segmentation of 3D tubular objects with adaptive front propagation and minimal tree extraction for 3D medical imaging. Computer Methods in Biomechanics and Biomedical Engineering, 10(4), 289–305.

    Article  Google Scholar 

  • Cohen, L. D., & Kimmel, R. (1997). Global minimum for active contour models: a minimal path approach. International Journal of Computer Vision, 24, 57–78.

    Article  Google Scholar 

  • Davatzikos, C. A., & Prince, J. L. (1995). An active contour model for mapping the cortex. IEEE Transactions on Medical Imaging, 14(1), 65–80.

    Article  Google Scholar 

  • Deschamps, T., & Cohen, L. D. (2001). Fast extraction of minimal paths in 3D images and applications to virtual endoscopy. Medical Image Analysis, 5, 281–299.

    Article  Google Scholar 

  • Deschamps, T., & Cohen, L. D. (2002). Fast extraction of tubular and tree 3D surfaces with front propagation methods. In IEEE international conference on pattern recognition (ICPR’02) (pp. 731–734).

  • Descoteaux, M., Collins, L., & Siddiqi, K. (2008). A geometric flow for segmenting vasculature in proton-density weighted MRI. Medical Image Analysis, 12(4), 497–513.

    Article  Google Scholar 

  • Dijkstra, E. W. (1959). A note on two problems in connection with graphs. Numerische Mathematic, 1, 269–271.

    Article  MathSciNet  MATH  Google Scholar 

  • Evans, C. L. (1998). Partial differential equations. Providence: American Mathematical Society.

    MATH  Google Scholar 

  • Frangi, A. F., Niessen, W. J., Vincken, K. L., & Viergever, M. A. (1998). Multiscale vessel enhancement filtering. In Lecture notes in computer science (Vol. 1496, pp. 130–137). Berlin: Springer.

    Google Scholar 

  • Freeman, W. T., & Adelson, E. H. (1991). The design and use of steerable filters. IEEE Transactions on Pattern Analysis and Machine Intelligence, 13(9), 891–906.

    Article  Google Scholar 

  • Gooya, A., Liao, H., Matsumiya, K., Masamune, K., Masutani, Y., & Dohi, T. (2008a). A variational method for geometric regularization of vascular segmentation in medical images. IEEE Transactions on Image Processing, 17(8), 1295–1312.

    Article  MathSciNet  Google Scholar 

  • Gooya, A., Dohi, T., Sakuma, I., & Liao, H. (2008b). Anisotropic Haralick edge detection scheme with application to vessel segmentation. In MIAR’08: Proceedings of the 4th international workshop on medical imaging and augmented reality (pp. 430–438). Berlin: Springer.

    Chapter  Google Scholar 

  • Gooya, A., Dohi, T., Sakuma, I., & Liao, H. (2008c). R-PLUS: a Riemannian anisotropic edge detection scheme for vascular segmentation. In MICCAI’08: Proceedings of the 11th international conference on medical image computing and computer-assisted intervention—Part I (pp. 262–269). Berlin: Springer.

    Google Scholar 

  • Hameeteman, R., Freiman, M., Zuluaga, M. A., Joskowicz, L., Rozie, S., van Gils, M. J., van den Borne, L., Sosna, J., Berman, P., Cohen, N., Douek, P., Sánchez, I., Aissat, M., van der Lugt, A., Krestin, G. P., Niessen, W. J., & van Walsum, T. (2009). Carotid lumen segmentation and stenosis grading challenge. In Workshop in international conference on medical image computing and computer assisted intervention, September 2009.

  • Hernández Hoyos, M., Serfaty, J. M., Maghiar, A., Mansard, C., Orkisz, M., Magnin, I. E., & Douek, P. (2006). Evaluation of semi-automatic arterial stenosis quantification. International Journal of Computer Assisted Radiology, 1(3), 167–175.

    Article  Google Scholar 

  • Holtzman-Gazit, M., Kimmel, R., Peled, N., & Goldsher, D. (2006). Segmentation of thin structures in volumetric medical images. IEEE Transactions on Image Processing, 15, 354–363.

    Article  Google Scholar 

  • Tavares, J., & Jorge, R. (2009). In Geodesic methods for shape and surface processing : Vol. 13. Advances in computational vision and medical image processing: methods and applications (pp. 29–56). Berlin: Springer.

    Chapter  Google Scholar 

  • Jacob, M., & Unser, M. (2004). Design of steerable filters for feature detection using Canny-like criteria. IEEE Transactions on Pattern Analysis and Machine Intelligence, 26(8), 1007–1019.

    Article  Google Scholar 

  • Jbabdi, S., Bellec, P., Toro, R., Daunizeau, J., Pélégrini-Issac, M., & Benali, H. (2008). Accurate anisotropic fast marching for diffusion-based geodesic tractography. International Journal of Biomedical Imaging, 2008(1), 1–12.

    Article  Google Scholar 

  • Kimmel, R., & Bruckstein, A. (2003). Regularized Laplacian zero crossings as optimal edge integrators. International Journal of Computer Vision, 53, 225–243.

    Article  Google Scholar 

  • Kirbas, C., & Quek, F. K. H. (2004). A review of vessel extraction techniques and algorithms. ACM Computing Surveys, 36, 81–121.

    Article  Google Scholar 

  • Konukoglu, E., Sermesant, M., Clatz, O., Peyrat, J.-M., Delingette, H., & Ayache, N. (2007). A recursive anisotropic fast marching approach to reaction diffusion equation: application to tumor growth modeling. In Lecture notes in computer science : Vol. 4584. Proceedings of the 20th international conference on information processing in medical imaging (IPMI’07) (pp. 686–699). Berlin: Springer.

    Google Scholar 

  • Krissian, K. (2002). Flux-based anisotropic diffusion applied to enhancement of 3-D angiogram. IEEE Transactions on Medical Imaging, 21(11), 1440–1442.

    Article  Google Scholar 

  • Krissian, K., Malandain, G., & Ayache, N. (1997). Directional anisotropic diffusion applied to segmentation of vessels in 3D images. In SCALE-SPACE’97: Proceedings of the first international conference on scale-space theory in computer vision, London, UK (pp. 345–348). Berlin: Springer.

    Google Scholar 

  • Law, W. K., & Chung, A. C. S. (2006). Segmentation of vessels using weighted local variances and an active contour model. In CVPRW ’06: Proceedings of the 2006 conference on computer vision and pattern recognition workshop, Washington, DC, USA (p. 83). Los Alamitos: IEEE Computer Society.

    Chapter  Google Scholar 

  • Law, M. W. K., & Chung, A. C. S. (2007). Weighted local variance-based edge detection and its application to vascular segmentation in magnetic resonance angiography. IEEE Transactions on Medical Imaging, 26(9), 1224–1241.

    Article  Google Scholar 

  • Law, M. W., & Chung, A. C. (2008). Three dimensional curvilinear structure detection using optimally oriented flux. In ECCV’08: Proceedings of the 10th European con computer vision, Berlin, Heidelberg (pp. 368–382). Berlin: Springer.

    Google Scholar 

  • Lenglet, C., Prados, E., Pons, J.-P., Deriche, R. & Faugeras, O. (2009). Brain connectivity mapping using Riemannian geometry, control theory and PDEs. SIAM Journal on Imaging Sciences (SIIMS), 2(2), 285–322.

    Article  MathSciNet  MATH  Google Scholar 

  • Lesage, D., Angelini, E. D., Bloch, I., & Funka-Lea, G. (2009a). Bayesian maximal paths for coronary artery segmentation from 3d ct angiograms. In Yang, G.-Z., Hawkes, D. J., Rueckert, D., Noble, J. A., & Taylor, C. J. (Eds.), Lecture notes in computer science : Vol. 5761. International conference on medical image computing and computer assisted intervention (1) (pp. 222–229). Berlin: Springer.

    Google Scholar 

  • Lesage, D., Angelini, E. D., Bloch, I., & Funka-Lea, G. (2009b). A review of 3D vessel lumen segmentation techniques: models, features and extraction schemes. Medical Image Analysis, 13(6), 819–845.

    Article  Google Scholar 

  • Li, H., & Yezzi, A. (2006). Vessels as 4D curves: global minimal 4D paths to extract 3D tubular surfaces. In IEEE conference on computer vision and pattern recognition (CVPR’06), Workshop MMBIA06 (p. 82).

  • Li, H., & Yezzi, A. (2007). Vessels as 4-D curves: global minimal 4-D paths to extract 3-D tubular surfaces and centerlines. IEEE Transactions on Medical Imaging, 26(9), 1213–1223.

    Article  Google Scholar 

  • Lin, Q. (2003). Enhancement, extraction, and visualization of 3D volume data. Ph.D. Thesis, Linkopings Universitet.

  • Lindeberg, T. (1998). Edge detection and ridge detection with automatic scale selection. International Journal of Computer Vision, 30, 465–470.

    Google Scholar 

  • Lions, P. L. (1982). Generalized solutions of Hamilton-Jacobi equations. Research notes in mathematics (Vol. 69). London: Pitman.

    MATH  Google Scholar 

  • Lorenz, C., Carlsen, I.-C., Buzug, T. M., Fassnacht, C., & Weese, J. (1997). Multi-scale line segmentation with automatic estimation of width, contrast and tangential direction in 2D and 3D medical images. In CVRMed-MRCAS’97: Proceedings of the first joint conference on computer vision, virtual reality and robotics in medicine and medial robotics and computer-assisted surgery, London, UK (pp. 233–242). Berlin: Springer.

    Google Scholar 

  • Manniesing, R., Viergever, M. A., & Niessen, W. J. (2006). Vessel enhancing diffusion: a scale space representation of vessel structures. Medical Image Analysis, 10(6), 815–825.

    Article  Google Scholar 

  • Manniesing, R., Viergever, M. A., & Niessen, W. J. (2007). Vessel axis tracking using topology constrained surface evolution. IEEE Transactions on Medical Imaging, 26(3), 309–316.

    Article  Google Scholar 

  • Melonakos, J., Pichon, E., Angenent, S., & Tannenbaum, A. (2008). Finsler active contours. IEEE Transactions Pattern Analysis and Machine Intelligence, 30(3), 412–423.

    Article  Google Scholar 

  • Mille, J., Benmansour, F., & Cohen, L. D. (2009). Carotid lumen segmentation based on tubular anisotropy and contours without edges. Insight Journal. http://www.insight-journal.org/browse/publication/670.

  • Mohan, V., Sundaramoorthi, G., Melonakos, J., Niethammer, M., Kubicki, M., & Tannenbaum, A. (2008). Tubular surface evolution for segmentation of the cingulum bundle from DW-MRI. In Mathematical methods in computational anatomy.

  • Nain, D., Yezzi, A., & Turk, G. (2004). Vessel segmentation using a shape driven flow. In Medical imaging computing and computer-assisted intervention (MICCAI’04) (pp. 51–59).

  • Nemitz, O., Rumpf, M., Tasdizen, T., & Whitaker, R. (2007). Anisotropic curvature motion for structure enhancing smoothing of 3D MR angiography data. Journal of Mathematical Imaging and Vision, 27(3), 217–229.

    Article  MathSciNet  Google Scholar 

  • Orkisz, M., Flórez Valencia, L., & Hernández Hoyos, M. (2008). Models, algorithms and applications in vascular image segmentation. Machine Graphics and Vision, 17(1), 5–33.

    Google Scholar 

  • Rouy, E., & Tourin, A. (1992). A viscosity solution approach to shape from shading. SIAM Journal on Numerical Analysis, 29, 867–884.

    Article  MathSciNet  MATH  Google Scholar 

  • Sato, Y., Nakajima, S., Shiraga, N., Atsumi, H., Yoshida, S., Koller, T., Gerig, G., & Kikinis, R. (1998). Three-dimensional multi-scale line filter for segmentation and visualization of curvilinear structures in medical images. Medical Image Analysis, 2(2), 143–168.

    Article  Google Scholar 

  • Sethian, J. A. (1996). A fast marching level set for monotonically advancing fronts. Proceedings of the National Academy of Sciences, 93, 1591–1595.

    Article  MathSciNet  MATH  Google Scholar 

  • Sethian, J. A., & Vladimirsky, A. (2000). Fast methods for the Eikonal and related Hamilton-Jacobi equations on unstructured meshes. Proceedings of the National Academy of Sciences, 97(11), 5699–5703.

    Article  MathSciNet  MATH  Google Scholar 

  • Siddiqi, K., & Vasilevskiy, A. (2001). 3d flux maximizing flows. In EMMCVPR’01: Proceedings of the third international workshop on energy minimization methods in computer vision and pattern recognition, London, UK (pp. 636–650). Berlin: Springer.

    Chapter  Google Scholar 

  • Sundaramoorthi, G., Yezzi, A., Mennucci, A. C., & Sapiro, G. (2009). New possibilities with Sobolev active contours. International Journal of Computer Vision, 84(2), 113–129.

    Article  Google Scholar 

  • Tsitsiklis, J. N. (1995). Efficient algorithms for globally optimal trajectories. IEEE Transactions on Automatic Control, 40, 1528–1538.

    Article  MathSciNet  MATH  Google Scholar 

  • Weber, O., Devir, Y. S., Bronstein, A. M., Bronstein, M. M., & Kimmel, R. (2008). Parallel algorithms for approximation of distance maps on parametric surfaces. ACM Transactions on Graphics, 27(4). http://portal.acm.org/citation.cfm?id=1409625.1409626.

  • Weickert, J. (1999). Coherence-enhancing diffusion filtering. International Journal of Computer Vision, 31(2–3), 111–127.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fethallah Benmansour.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Benmansour, F., Cohen, L.D. Tubular Structure Segmentation Based on Minimal Path Method and Anisotropic Enhancement. Int J Comput Vis 92, 192–210 (2011). https://doi.org/10.1007/s11263-010-0331-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11263-010-0331-0

Keywords

Navigation