Skip to main content
Log in

A Riemannian Framework for Tensor Computing

  • Published:
International Journal of Computer Vision Aims and scope Submit manuscript

Abstract

Tensors are nowadays a common source of geometric information. In this paper, we propose to endow the tensor space with an affine-invariant Riemannian metric. We demonstrate that it leads to strong theoretical properties: the cone of positive definite symmetric matrices is replaced by a regular and complete manifold without boundaries (null eigenvalues are at the infinity), the geodesic between two tensors and the mean of a set of tensors are uniquely defined, etc.

We have previously shown that the Riemannian metric provides a powerful framework for generalizing statistics to manifolds. In this paper, we show that it is also possible to generalize to tensor fields many important geometric data processing algorithms such as interpolation, filtering, diffusion and restoration of missing data. For instance, most interpolation and Gaussian filtering schemes can be tackled efficiently through a weighted mean computation. Linear and anisotropic diffusion schemes can be adapted to our Riemannian framework, through partial differential evolution equations, provided that the metric of the tensor space is taken into account. For that purpose, we provide intrinsic numerical schemes to compute the gradient and Laplace-Beltrami operators. Finally, to enforce the fidelity to the data (either sparsely distributed tensors or complete tensors fields) we propose least-squares criteria based on our invariant Riemannian distance which are particularly simple and efficient to solve.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aubert, G. and Kornprobst, P. 2001. Mathematical Problems in Image Processing, vol. 147 of Applied Mathematical Sciences, Springer.

  • Basser, P., Mattiello, J., and Bihan, D.L. 1994. MR diffusion tensor spectroscopy and imaging. Biophysical Journal, 66:259–267.

    Article  Google Scholar 

  • Batchelor, P., Hill, D., Calamante, F., and Atkinson, D. 2001. Study of the connectivity in the brain using the full diffusion tensor from MRI. In Proc. of the 17th Int. Conf. on Information Processing in Medical Imaging (IPMI 2001), M. Insana and R. Leahy (Eds.), vol. 2082 of LNCS, Springer Verlag, pp. 121–133.

  • Bhatia, R. 2003. On the exponential metric increasing property. Linear Algebra and its Applications, 375:211–220.

    Article  MathSciNet  MATH  Google Scholar 

  • Cazals, F. and Boissonnat, J.-D. 2001. Natural coordinates of points on a surface. Comp. Geometry Theory and Applications, 19:155–173.

    MathSciNet  MATH  Google Scholar 

  • Chefd'hotel, C., Tschumperlé, D., Deriche, R., and Faugeras, O. 2002. Constrained flows of matrix-valued functions: Application to diffusion tensor regularization. In Proc. of ECCV 2002, Hayden et al., (Eds.), vol. 2350 of LNCS, Springer Verlag, pp. 251–265.

  • Chefd'hotel, C., Tschumperlé, D., Deriche, R. and Faugeras, O. 2004. Regularizing flows for constrained matrix-valued images. J. Math. Imaging and Vision, 20(1/2):147–162.

    MathSciNet  Google Scholar 

  • Coulon, O., Alexander, D., and Arridge, S. 2001. A regularization scheme for diffusion tensor magnetic resonance images. In Proc. of the 17th Int. Conf. on Information Processing in Medical Imaging (IPMI 2001), M. Insana, and R. Leahy (Eds.), vol. 2082 of LNCS, Springer Verlag. pp. 92–105.

  • Coulon, O., Alexander, D. and Arridge, S. 2004. Diffusion tensor magnetic resonance image regularization. Medical Image Analysis, 8(1):47–67.

    Article  Google Scholar 

  • Fillard, P., Gilmore, J., Piven, J., Lin, W., and Gerig, G. 2003. Quantitative analysis of white matter fiber properties along geodesic paths. In Proc. of MICCAI'03, Part II, R.E. Ellis and T.M. Peters (Eds.), vol. 2879 of LNCS, Montreal, Springer Verlag, pp. 16–23.

    Google Scholar 

  • Fletcher, P.T. and Joshi, S.C. 2004. Principal geodesic analysis on symmetric spaces: Statistics of diffusion tensors. In Computer Vision and Mathematical Methods in Medical and Biomedical Image Analysis, ECCV 2004 Workshops CVAMIA and MMBIA, Prague, Czech Republic, May 15, 2004, vol. 3117 of LNCS, pp. 87–98. Springer.

  • Förstner, W. and Moonen, B. 1999. A metric for covariance matrices. In Qua vadis geodesia⋯? Festschrift for Erik W. Grafarend on the occasion of his 60th Birthday, F. Krumm and V.S. Schwarze (Eds.) number 1999.6 in Tech. Report of the Dpt of Geodesy and Geoinformatics, Stuttgart University, pp. 113–128.

  • Gallot, S., Hulin, D., and Lafontaine, J. 1993. Riemannian Geometry, 2nd edition, Springer Verlag.

  • Gamkrelidze, R. (Ed.) 1991. Geometry I, vol. 28 of Encyclopaedia of Mathematical Sciences, Springer Verlag.

  • Gerig, G., Kikinis, R., Kübler, O., and Jolesz, F. 1992. Nonlinear anisotropic filtering of MRI data. IEEE Transactions on Medical Imaging, 11(2):221–232.

    Article  Google Scholar 

  • Helgason, S. 1978. Differential Geometry, Lie Groups, and Symmetric Spaces. Academic Press.

  • Kendall, M. and Moran, P. 1963. Geometrical Probability. No. 10 in Griffin's statistical monographs and courses. Charles Griffin & Co. Ltd.

  • Kendall, W. 1990. Probability, convexity, and harmonic maps with small image I: Uniqueness and fine existence. Proc. London Math. Soc., 61(2):371–406.

    MathSciNet  MATH  Google Scholar 

  • Kobayashi, S. and Nomizu, K. 1969. Foundations of Differential Geometry, vol. II of Interscience Tracts in Pure and Applied Mathematics. John Wiley & Sons.

  • Le Bihan, D., Manguin, J.-F., Poupon, C., Clark, C., Pappata, S., Molko, N., and Chabriat, H. 2001. Diffusion tensor imaging: Concepts and applications. Journal Magnetic Resonance Imaging, 13(4):534–546.

    Google Scholar 

  • Lenglet, C., Rousson, M., Deriche, R., and Faugeras, O. 2004a. Statistics on multivariate normal distributions: A geometric approach and its application to diffusion tensor MRI. Research Report 5242, INRIA.

  • Lenglet, C., Rousson, M., Deriche, R., and Faugeras, O. 2004b. Toward segmentation of 3D probability density fields by surface evolution: Application to diffusion MRI. Research Report 5243, INRIA.

  • Meijering, E. 2002. A chronology of interpolation: From ancient astronomy to modern signal and image processing. Proceedings of the IEEE, 90(3):319–342.

    Google Scholar 

  • Nomizu, K. 1954. Invariant affine connections on homogeneous spaces. American J. of Math., 76:33–65.

    Article  MathSciNet  MATH  Google Scholar 

  • Pennec, X. 1996. L'incertitude dans les problèmes de reconnaissance et de recalage—Applications en imagerie médicale et biologie moléculaire. Thèse de sciences (PhD thesis), Ecole Polytechnique, Palaiseau (France).

    Google Scholar 

  • Pennec, X. 1999. Probabilities and statistics on Riemannian manifolds: Basic tools for geometric measurements. In Proc. of Nonlinear Signal and Image Processing (NSIP'99), A. Cetin, L. Akarun, A. Ertuzun, M. Gurcan, and Y. Yardimci (Eds.) June 20–23, Antalya, Turkey. vol. 1, pp. 194–198. IEEE-EURASIP,

    Google Scholar 

  • Pennec, X. 2004. Probabilities and statistics on Riemannian manifolds: A geometric approach. Research Report 5093, INRIA. Int. Journal of Mathematical Imaging and Vision (submitted).

  • Pennec, X. and Ayache, N. 1998. Uniform distribution, distance and expectation problems for geometric features processing. Journal of Mathematical Imaging and Vision, 9(1):49–67.

    Article  MathSciNet  MATH  Google Scholar 

  • Pennec, X. and Thirion, J.-P. 1997. A framework for uncertainty and validation of 3D registration methods based on points and frames. Int. Journal of Computer Vision, 25(3):203–229.

    Google Scholar 

  • Perona, P. and Malik, J. 1990. Scale-space and edge detection using anisotropic diffusion. IEEE Trans. Pattern Analysis and Machine Intelligence (PAMI), 12(7):629–639.

    Google Scholar 

  • Poincaré, H. 1912. Calcul des probabilités, 2nd edition, Paris.

  • Rey, D., Subsol, G., Delingette, H., and Ayache, N. 2002. Automatic detection and segmentation of evolving processes in 3D medical images: Application to multiple sclerosis. Medical Image Analysis, 6(2):163–179.

    Article  Google Scholar 

  • Sapiro, G. 2001. Geometric Partial Differential Equations and Image Analysis. Cambridge University Press.

  • Sibson, R. 1981. A brief description of natural neighbour interpolation. In Interpreting Multivariate Data, V. Barnet (Ed.), John Wiley & Sons, Chichester, pp. 21–36.

  • Skovgaard, L. 1984. A Riemannian geometry of the multivariate normal model. Scand. J. Statistics, 11:211–223.

    MathSciNet  MATH  Google Scholar 

  • Thévenaz, P., Blu, T., and Unser, M. 2000. Interpolation revisited. IEEE Transactions on Medical Imaging, 19(7):739–758.

    Google Scholar 

  • Tschumperlé, D. 2002. PDE-Based Regularization of Multivalued Images and Applications. PhD thesis, University of Nice-Sophia Antipolis.

  • Tschumperlé, D. and Deriche, R. 2002. Orthonormal vector sets regularization with PDE's and applications. International Journal on Computer Vision, 50(3):237–252.

    MATH  Google Scholar 

  • Weickert, J. 1998. Anisotropic Diffusion in Image Processing. Teubner-Verlag.

  • Weickert, J. and Brox, T. 2002. Diffusion and regularization of vector- and matrix-valued images. In Inverse Problems, Image Analysis, and Medical Imaging., M. Nashed and O. Scherzer (Eds.), vol. 313 of Contemporary Mathematics, Providence. AMS. pp. 251–268.

  • Westin, C., Maier, S., Mamata, H., Nabavi, A., Jolesz, F., and Kikinis, R. 2002. Processing and visualization for diffusion tensor MRI. Medical Image Analysis, 6(2):93–108.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xavier Pennec.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pennec, X., Fillard, P. & Ayache, N. A Riemannian Framework for Tensor Computing. Int J Comput Vision 66, 41–66 (2006). https://doi.org/10.1007/s11263-005-3222-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11263-005-3222-z

Keywords

Navigation