Skip to main content
Log in

Virulence evaluation of Israeli Marek’s disease virus isolates from commercial poultry using their meq gene sequence

  • Original Paper
  • Published:
Virus Genes Aims and scope Submit manuscript

Abstract

Fifty-seven Gallid alphaherpesvirus 2 (GaHV-2) isolates, collected during a 30-year period (1990–2019) from commercial poultry flocks affected by Marek’s disease (MD), were molecularly characterised. The GaHV-2 meq gene was amplified and sequenced to evaluate the virus virulence, based on the number of PPPPs within the proline-rich repeats (PRRs) of its transactivation domain. The present illustration of virus virulence evaluation on a large scale of field virus isolates by molecular analysis exemplifies the practical benefit and usefulness of the molecular marker in commercial GaVH-2 isolates. The alternative assay of GaVH-2 virulence pathotyping is the classical Gold Standard ADOL method, which is difficult and impossible to employ on a large scale using the Specific Pathogen Free (SPF) chicks of the ADOL strains kept in isolators for two months. The phylogenetic analysis performed in the present study showed that the meq gene amino acid sequences of the 57 Israeli strains divide into 16 phylogenetic branches. The virulence evaluation was performed in comparison with 36 GaHV-2 prototype strains, previously characterised by the in vivo Gold Standard ADOL assay. The results obtained revealed that the GaHV-2 strains circulating in Israel have evolved into a higher virulence potential during the years, as the four-proline stretches number in the meq gene decreased over the investigated period, typically of very virulent virus prototypes. The present study supports the meq gene molecular markers for the assessment of field GaVH-2 strains virulence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1 

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. Gimeno IM (2014) Marek’s disease and differential diagnosis with other tumor viral diseases of poultry. Encyclopedia of agriculture and food systems. Elsevier, Amsterdam, pp 156-171. https://doi.org/10.1016/B978-0-444-52512-3.00193-5

    Chapter  Google Scholar 

  2. Gimeno IM, Schat KA (2018) Virus-induced immunosuppression in chickens. Avian Dis 62:272–285. https://doi.org/10.1637/11841-041318-Review

    Article  CAS  PubMed  Google Scholar 

  3. Schat KA, Nair V (2013) Neoplastic diseases: Marek’s disease. In: Swayne DE, Glisson JR, McDougald LR, Nolan LK, Suarez DL, Nair VL (eds) Diseases of poultry, 13th edn. Wiley-Blackwell Hoboken, Ames, IA, pp 515–552

    Google Scholar 

  4. Gatherer D, Depledge DP, Hartley CA, Szpara ML, Vaz PK, Benkő M, Brandt CR, Bryant NA, Dastjerdi A, Doszpoly A, Gompels UA, Inoue N, Jarosinski KW, Kaul R, Lacoste V, Norberg P, Origgi FC, Orton RJ, Pellett PE, Schmid DS, Spatz SJ, Stewart JP, Trimpert J, Waltzek TB, Davison AJ (2021) ICTV virus taxonomy profile: Herpesviridae 2021. J Gen Virol 102(10):1–2. https://doi.org/10.1099/JGV.0.001673

    Article  Google Scholar 

  5. Nair V (2018) Spotlight on avian pathology: Marek’s disease. Avian Pathol 47:440–442. https://doi.org/10.1080/03079457.2018.1484073

    Article  CAS  PubMed  Google Scholar 

  6. Trimpert J, Groenke N, Jenckel M, He S, Kunec D, Szpara ML, Spatz SJ, Osterrieder N, McMahon DP (2017) A phylogenomic analysis of Marek’s disease virus reveals independent paths to virulence in Eurasia and North America. Evol Appl 10:1091–1101. https://doi.org/10.1111/eva.12515

    Article  PubMed  PubMed Central  Google Scholar 

  7. Witter RL (1997) Increased virulence of Marek’s disease virus field isolates. Avian Dis 41:149. https://doi.org/10.2307/1592455

    Article  CAS  PubMed  Google Scholar 

  8. Witter RL, Calnek BW, Buscaglia C, Gimeno IM, Schat KA (2005) Classification of Marek’s disease viruses according to pathotype: philosophy and methodology. Avian Pathol 34:75–90. https://doi.org/10.1080/03079450500059255

    Article  CAS  PubMed  Google Scholar 

  9. Davidson I, Natour-Altory A, Raibstein I, Kin E, Dahan Y, Krispin H, Elkin N (2018) Monitoring the uptake of live avian vaccines by their detection in feathers. Vaccine 36:637–643. https://doi.org/10.1016/j.vaccine.2017.12.052

    Article  CAS  PubMed  Google Scholar 

  10. Davidson I, Natour-Altory N, Shimshon Y (2018) Evaluation of live vaccine application in commercial poultry flocks using feathers—in practice. Israel J Vet Med 73:8–13

    Google Scholar 

  11. Davidson I (2020) Out of sight but not out of mind aspects of the oncogenic herpesvirus, Marek’s Disease virus. Animals (Basel) 10(8):1319. https://doi.org/10.3390/ani10081319

    Article  PubMed  Google Scholar 

  12. Schat KA, van Santen VL (2013) Chicken infectious anemia. In: Swayne DE, Glisson JR, McDougald LR, Nolan LK, Suarez DL, Nair VL (eds) Diseases of poultry, 13th edn. Wiley-Blackwell Hoboken, Ames, IA, pp 248–275

    Google Scholar 

  13. Liu JL, Lin SF, Xia L, Brunovskis P, Li D, Davidson I, Lee LF, Kung HJ (1999) Meq and V-IL8: cellular genes in disguise? Acta Virol 43:94–101

    CAS  PubMed  Google Scholar 

  14. Qian Z, Brunovskis P, Rauscher F 3rd, Lee L, Kung HJ (1995) Transactivation activity of Meq, a Marek’s disease herpesvirus bZIP protein persistently expressed in latently infected transformed T cells. J Virol 69:4037-4044.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ross NLJ (1999) T-cell transformation by Marek’s disease virus. Trends Microbiol 7:22–29. https://doi.org/10.1016/S0966-842X(98)01427-9

    Article  CAS  PubMed  ADS  Google Scholar 

  16. Shamblin CE, Greene N, Arumugaswami V, Dienglewicz RL, Parcells MS (2004) Comparative analysis of Marek’s disease virus (MDV) glycoprotein-, lytic antigen pp38- and transformation antigen Meq-encoding genes: association of meq mutations with MDVs of high virulence. Vet Microbiol 102:147–167. https://doi.org/10.1016/j.vetmic.2004.06.007

    Article  CAS  PubMed  Google Scholar 

  17. Duffy S, Shackelton LA, Holmes EC (2008) Rates of evolutionary change in viruses: patterns and determinants. Nat Rev Genet 9:267–276. https://doi.org/10.1038/nrg2323

    Article  CAS  PubMed  Google Scholar 

  18. Firth C, Kitchen A, Shapiro B, Suchard MA, Holmes EC, Rambaut A (2010) Using time-structured data to estimate evolutionary rates of double-stranded DNA viruses. Mol Biol Evol 27:2038–2051. https://doi.org/10.1093/molbev/msq088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Padhi A, Parcells MS (2016) Positive selection drives rapid evolution of the meq oncogene of Marek’s disease virus. PLoS One 11(9):e0162180. https://doi.org/10.1371/journal.pone.0162180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Renz KG, Cooke J, Clarke N, Cheetham BF, Hussain Z, Fakhrul Islam AFM, Tannock GA, Walkden-Brown SW (2012) Pathotyping of Australian isolates of Marek’s disease virus and association of pathogenicity with meq gene polymorphism. Avian Pathol 41:161–176. https://doi.org/10.1080/03079457.2012.656077

    Article  PubMed  Google Scholar 

  21. Dudnikova E, Norkina S, Vlasov A, Slobodchuk A, Lee LF, Witter RL (2007) Evaluation of Marek’s disease field isolates by the “best fit” pathotyping assay. Avian Pathol 36:135–143. https://doi.org/10.1080/03079450701209857

    Article  PubMed  Google Scholar 

  22. Dunn JR, Black Pyrkosz A, Steep A, Cheng HH (2019) Identification of Marek’s disease virus genes associated with virulence of US strains. J Gen Virol 100:1132–1139. https://doi.org/10.1099/jgv.0.001288

    Article  CAS  PubMed  Google Scholar 

  23. Mescolini G, Lupini C, Felice V, Guerrini A, Silveira F, Cecchinato M, Catelli E (2019) Molecular characterization of the meq gene of Marek’s disease viruses detected in unvaccinated backyard chickens reveals the circulation of low- and high-virulence strains. Poult Sci 98:3130–3137. https://doi.org/10.3382/ps/pez095

    Article  CAS  PubMed  Google Scholar 

  24. Mescolini G, Lupini C, Davidson I, Massi P, Tosi G, Fiorentini L, Catelli E (2020) Molecular characterization of a Marek’s disease virus strain detected in tumour-bearing turkeys. Avian Pathol 2:202–207. https://doi.org/10.1080/03079457.2019.1691715

    Article  CAS  Google Scholar 

  25. Mescolini G, Lupini C, Davidson I, Massi P, Tosi G, Catelli E (2020) Marek’s disease viruses circulating in commercial poultry in Italy in the years 2015–2018 are closely related by their meq gene phylogeny. Transbound Emerg Dis 67:98–107. https://doi.org/10.1111/tbed.13327

    Article  PubMed  Google Scholar 

  26. Davidson I, Weisman Y, Orgad U, Jacobson B, Perl S, Strenger C, Becker Y, Malkinson M (1988) Pathogenicity studies of Marek’s disease virus isolates in Israel. Israel J Vet Sci 44:223–232

    Google Scholar 

  27. Davidson I, Borenshtain R (1999) Multiple infection of chickens and turkeys with avian oncogenic viruses: prevalence and molecular analysis. Acta Virol 43:136–142

    CAS  PubMed  Google Scholar 

  28. Davidson I (2007) Avian oncogenic viruses: the correlation between clinical signs and molecular virus identification, knowledge acquired from the examination of over 1000 flocks. Isr Vet Med J 62:42–47

    Google Scholar 

  29. Hassanin O, Abdallah F, El-Araby IE (2013) Molecular characterization and phylogenetic analysis of Marek’s disease virus from clinical cases of Marek’s disease in Egypt. Avian Dis 57:555–561. https://doi.org/10.1637/10337-082912-Reg.1

    Article  PubMed  Google Scholar 

  30. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680. https://doi.org/10.1093/nar/22.22.4673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35:1547–1549. https://doi.org/10.1093/molbev/msy096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Yu Z-H, Man T, Lou J, Wang X-W, Ding K, Yu L-L, Su J-W, Chi J-Q, Zhao P, Hu B, Zhang G-P, Liu J-X (2013) Molecular characteristics and evolutionary analysis of field Marek’s disease virus prevalent in vaccinated chicken flocks in recent years in China. Virus Genes 47:282–291. https://doi.org/10.1007/s11262-013-0942-y

    Article  CAS  PubMed  Google Scholar 

  33. Suresh P, Johnson Rajeswar J, Sukumar K, Harikrishnan TJ, Srinivasan P (2017) Complete nucleotide sequence analysis of the oncogene “Meq” from serotype 1 Marek’s disease virus isolates from India. Br Poult Sci 58:111–115. https://doi.org/10.1080/00071668.2016.1257780

    Article  CAS  PubMed  Google Scholar 

  34. Abdallah F, Hassanin O, Attar E, Ali H, Megahed M, Nair V (2018) Marek’s disease virus in Egypt: historical overview and current research based on the major MDV-encoded oncogene meq. Hosts Virus 5:35–43. https://doi.org/10.17582/journal.hv/2018/5.3.35.43

    Article  CAS  Google Scholar 

  35. Woźniakowski G, Samorek-Salamonowicz E (2014) Molecular evolution of Marek’s Disease Virus (MDV) field strains in a 40-year time period. Avian Dis 58:550–557. https://doi.org/10.1637/10812-030614-Reg.1

    Article  PubMed  Google Scholar 

  36. Abd-Ellatieff H, Abou Rawash AA, Ellakany HF, Goda WM, Suzuki T, Yanai T (2018) Molecular characterization and phylogenetic analysis of a virulent Marek’s disease virus field strain in broiler chickens in Japan. Avian Pathol 47:47–57. https://doi.org/10.1080/03079457.2017.1362497

    Article  CAS  PubMed  Google Scholar 

  37. Ghalyanchilangeroudi A, Hossein H, Hadi HN, Aidin M, Omid D, Morshed R (2022) Molecular characterization and phylogenetic analysis of Marek’s disease virus in Iran. Avian Dis 66(3):1–5. https://doi.org/10.1637/aviandiseases-D-22-00018

    Article  PubMed  Google Scholar 

  38. Read AF, Baigent SJ, Powers C, Kgosana LB, Blackwell L, Smith LP, Kennedy DA, Walkden-Brown SW, Nair VK (2015) Imperfect vaccination can enhance the transmission of highly virulent pathogens. PLoS Biol 13:e1002198. https://doi.org/10.1371/journal.pbio.1002198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Spatz SJ, Petherbridge L, Zhao Y, Nair V (2007) Comparative full-length sequence analysis of oncogenic and vaccine (Rispens) strains of Marek’s disease virus. J Gen Virol 88:1080-1096. https://doi.org/10.1099/vir.0.82600-0

    Article  CAS  PubMed  Google Scholar 

  40. Spatz SJ, Silva RF (2007) Polymorphisms in the repeat long regions of oncogenic and attenuated pathotypes of Marek’s disease virus 1. Virus Genes 35:41–53. https://doi.org/10.1007/s11262-006-0024-5

    Article  CAS  PubMed  Google Scholar 

  41. Spatz SJ, Smith LP, Baigent SJ, Petherbridge L, Nair V (2011) Genotypic characterization of two artificial chromosome clones derived from a single DNA source of the very virulent gallid herpesvirus-2 strain C12/130. J Gen Viro 92:1500–1507. https://doi.org/10.1099/vir.0.027706-0

    Article  CAS  Google Scholar 

  42. Tulman ER, Afonso CL, Lu Z, Zsak L, Rock DL, Kutish GF (2000) The genome of a very virulent Marek’s disease virus. J Virol 74:7980–7988. https://doi.org/10.1128/jvi.74.17.7980-7988.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zhang F, Liu CJ, Zhaanalysisng YP, Li Z, Liu AL, Yan FH, Cheng Y (2012) Comparative full-length sequence analysis of Marek’s disease virus vaccine strain 814. Arch Virol 157:177–183. https://doi.org/10.1007/s00705-011-1131-8

  44. Puro KU, Bhattacharjee U, Baruah S, Sen A, Das S, Ghatak S, Doley S, Sanjukta R, Shakuntala I (2018) Characterization of Marek's disease virus and phylogenetic analyses of meq gene from an outbreak in poultry in Meghalaya of Northeast India. Virus disease 29:167–172. https://doi.org/10.1007/s13337-018-0448-2

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

ID collected and characterized the samples from commercial flocks, provided them for sequencing and wrote the manuscript. GM carried out the study conception and design, the experiment analysis, interpretation of results and manuscript preparation. EC and CL provided critical feedback and helped shape the research, analysis and manuscript. GC carried out the experiment and manuscript preparation. LM carried out the experiment.

Corresponding author

Correspondence to Irit Davidson.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethical statement

The study reported in this paper was non-interventional and only used existing samples that were submitted for routine diagnostic purposes.

Additional information

Edited by Nicola Decaro.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Davidson, I., Lupini, C., Catelli, E. et al. Virulence evaluation of Israeli Marek’s disease virus isolates from commercial poultry using their meq gene sequence. Virus Genes 60, 32–43 (2024). https://doi.org/10.1007/s11262-023-02042-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11262-023-02042-7

Keywords

Navigation