Skip to main content
Log in

Complete genome sequence of a novel sea otterpox virus

  • Published:
Virus Genes Aims and scope Submit manuscript

Abstract

Members of the Poxviridae family are large, double-stranded DNA viruses that replicate in the cytoplasm of their host cells. The subfamily Chordopoxvirinae contains viruses that infect a wide range of vertebrates including marine mammals within the Balaenidae, Delphinidae, Mustelidae, Odobenidae, Otariidae, Phocidae, and Phocoenidae families. Recently, a novel poxvirus was found in a northern sea otter pup (Enhydra lutris kenyoni) that stranded in Alaska in 2009. The phylogenetic relationships of marine mammal poxviruses are not well established because of the lack of complete genome sequences. The current study sequenced the entire sea otterpox virus Enhydra lutris kenyoni (SOPV-ELK) genome using an Illumina MiSeq sequencer. The SOPV-ELK genome is the smallest poxvirus genome known at 127,879 bp, is 68.7% A+T content, is predicted to encode 132 proteins, and has 2546 bp inverted terminal repeats at each end. Genetic and phylogenetic analyses based on the concatenated amino acid sequences of 7 chorodopoxvirus core genes revealed the SOPV-ELK is 52.5–74.1% divergent from other known chordopoxviruses and is most similar to pteropoxvirus from Australia (PTPV-Aus). SOPV-ELK represents a new chordopoxvirus species and may belong to a novel genus. SOPV-ELK encodes eight unique genes. While the function of six predicted genes remains unknown, two genes appear to function as novel immune-modulators. SOPV-ELK-003 appears to encode a novel interleukin-18 binding protein (IL-18 BP), based on limited sequence and structural similarity to other poxviral IL-18 BPs. SOPV-ELK-035 appears to encode a novel tumor necrosis factor receptor-like (TNFR) protein that may be associated with the depression of the host’s antiviral response. Additionally, SOPV-ELK-036 encodes a tumor necrosis factor-like apoptosis-inducing ligand (TRAIL) protein that has previously only been found in PTPV-Aus. The SOPV-ELK genome is the first mustelid poxvirus and only the second poxvirus from a marine mammal to be fully sequenced. Sequencing of the SOPV-ELK genome is an important step in unraveling the position of marine mammal poxviruses within the larger Poxviridae phylogenetic tree and provides the necessary sequence to develop molecular tools for future diagnostics and epidemiological studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Lewis-Jones S (2004) Zoonotic poxvirus infections in humans. Curr Opin Infect Dis 17:81–89

    Article  Google Scholar 

  2. Bracht AJ, Brudek RL, Ewing RY, Manire CA, Burek KA, Rosa C, Beckmen KB, Maruniak JE, Romero CH (2006) Genetic identification of novel poxviruses of cetaceans and pinnipeds. Arch Virol 151:423–438

    Article  CAS  Google Scholar 

  3. Moss B (2007) Poxviridae: the viruses and their replication. In: Knipe DM, Howley PM (eds) Fields virology, 5th edn. Wolters Kluwer Health Lippincott Williams & Wilkins, Philadelphia, pp 2905–2945

    Google Scholar 

  4. Baroudy BM, Venkatesan S, Moss B (1982) Sequence homologies of diverse length tandem repetitions near ends of vaccinia virus genome suggest unequal crossing over. Cell 28:5673–5679

    Article  Google Scholar 

  5. Lefkowitz EJ, Wang C, Upton C (2006) Poxviruses: past, present, and future. Virus Res 117:105–118

    Article  CAS  Google Scholar 

  6. Günther T, Haas L, Alawi M, Wohlsein P, Marks J, Grundhoff A, Becher P, Fischer N (2017) Recovery of the first full-length genome sequence of a parapoxvirus directly from a clinical sample. Sci Rep-UK 7:e3734

    Article  Google Scholar 

  7. Tu SL, Nakazawa Y, Gao J, Wilkins K, Gallardo-Romero N, Li Y, Emerson GL, Carroll DS, Upton C (2017) Characterization of Eptesipoxvirus, a novel poxvirus from a microchiropteran bat. Virus Genes 53:856–867

    Article  CAS  Google Scholar 

  8. Haller SL, Peng C, McFadden G, Rothenburg S (2014) Poxviruses and the evolution of host range and virulence. Infect Genet Evol 21:15–40

    Article  CAS  Google Scholar 

  9. Tuomi PA, Murray MJ, Garner MM, Goertz CEC, Nordhausen RW, Burek-Huntington KA, Getzy DM, Nielsen O, Archer LL, Maness HTD, Wellehan JFS Jr, Waltzek TB (2014) Novel poxvirus infection in northern and southern sea otters (Enhydra lutris kenyoni and Enhydra lutris neiris), Alaska and California. USA J Wildl Dis 50:607–615

    Article  CAS  Google Scholar 

  10. Van Bressem MF, Van Waerebeek K, Raga JA (1999) A review of virus infections of cetaceans and the potential impact of morbilliviruses, poxviruses and papillomaviruses on host population dynamics. Dis Aquat Org 38:53–65

    Article  Google Scholar 

  11. Nollens HH, Hernandez JA, Jacobson ER, Haulena M, Gulland FMD (2005) Risk factors associated with development of poxvirus lesions in hospitalized California sea lions. JAVMA 227:465–473

    Article  Google Scholar 

  12. Van Bressem MF, Van Waerebeek K (1996) Epidemiology of poxvirus in small cetaceans from the eastern south Pacific. Mar Mammal Sci 12:371–382

    Article  Google Scholar 

  13. Roess AA, Levine RS, Barth L, Monroe BP, Carroll DS, Damon IK, Reynolds MG (2011) Sealpox virus in marine mammal rehabilitation facilities, North America, 007-2009. Emerg Infect Dis 17:2203–2208

    Article  Google Scholar 

  14. Van Bressem MF, Van Waerebeek K, Flach L, Reyes JC, de Oliveira Santos MC, Siciliano S, Echgaray M, Viddi F, Felix F, Crespo E, Avila ICS, Fraijia N, Castro C (2008) Skin diseases in cetaceans. In: Scientific Committee document International Whaling Commission SC/60/DW8:1–11

  15. Geraci JR, Hicks BD, St Aubin DJ (1979) Dolphin pox: a skin disease of cetaceans. Can J Comp Med 43:399–404

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Becher P, König M, Müller G, Siebert U, Thiel HJ (2002) Characterization of sealpox virus, a separate member of the parapoxviruses. Arch Virol 147:1133–1140

    Article  CAS  Google Scholar 

  17. Migaki G (1987) Selected dermatoses of marine mammals. Clin Dermatol 5:155–164

    Article  CAS  Google Scholar 

  18. Nollens HH, Gulland FMD, Jacobson ER, Hernandez JA, Klein PA, Walsh MT, Condit RC (2006) Parapoxviruses of seals and sea lions make up a distinct subclade within the genus Parapoxvirus. Virology 349:316–324

    Article  CAS  Google Scholar 

  19. Waltzek TB, Cortés-Hinojosa G, Wellehan JFX Jr, Gray GC (2012) Marine mammal zoonoses: a review of disease manifestations. Zoonoses Public Health 59:1–15

    Article  Google Scholar 

  20. Clark C, McIntyre PG, Evans A, McInnes CJ, Lewis-Jones S (2005) Human sealpox resulting from a seal bite: confirmation that sealpox virus is zoonotic. Br J Dermatol 152:791–793

    Article  CAS  Google Scholar 

  21. Hicks BD, Worthy GAJ (1987) Sealpox in captive grey seals (Halichoerus grypus) and their handlers. J Wildl Dis 23:1–6

    Article  CAS  Google Scholar 

  22. Kienzel N, Young D, Zehntner S, Bushell G, Sculley TB (1996) DNaseI treatment is a prerequisite for the amplification of cDNA from episomal-based genes. Biotechniques 20:612–616

    Google Scholar 

  23. Sambrook J, Frisch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  24. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM, Nikolenko SI, Pham S, Prjibelski AD, Pyshkin AV, Sirotkin AV, Vyahhi N, Tesler G, Alekseyev MA, Pevzner PA (2012) SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 19:455–477

    Article  CAS  Google Scholar 

  25. Langmead B, Salzberg S (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9:357–360

    Article  CAS  Google Scholar 

  26. Milne I, Bayer M, Cardle L, Shaw P, Stephen G, Wright F, Marshall D (2010) Tablet—next generation sequence assembly visualization. Bioinformatics 26:401–402

    Article  CAS  Google Scholar 

  27. Da Silva M, Upton C (2012) Bioinformatics for analysis of poxvirus genomes. In: Isaacs SN (ed) Vaccinia virus and poxvirology, 2nd edn. Springer, New York, pp 233–258

    Chapter  Google Scholar 

  28. Tcherepanov V, Ehlers A, Upton C (2006) Genome annotation transfer utility (GATU): rapid annotation of viral genomes using a closely related reference genome. BMC Genom 7:150–159

    Article  Google Scholar 

  29. O’Dea MA, Tu SL, Pang S, Ridder TD, Jackson B, Upton C (2016) Genome characterization of a novel poxvirus from a flying fox: evidence for a new genus? J Gen Virol 97:2363–2375

    Article  Google Scholar 

  30. Marchler-Bauer A, Bo Y, Han L, He J, Lanczycki CJ, Lu S, Chitsaz F, Derbyshire MK, Geer RC, Gonzales NR, Gwadz M, Hurwitz DI, Lu F, Marchler GH, Song JS, Thanki N, Wang Z, Yamashita RA, Zhang D, Zheng C, Geer LY, Bryant SH (2017) CDD/SPARCLE: a functional classification of proteins via subfamily domain architectures. Nucleic Acids Res 45:200–203

    Article  Google Scholar 

  31. Alva V, Nam SZ, Söding J, Lupas AN (2016) The MPI bioinformatics toolkit as an integrative platform for advanced protein sequence and structure analysis. Nucleic Acids Res 44:410–415

    Article  Google Scholar 

  32. De Castro E, Sigrist CJA, Gattiker A, Bulliard V, Langendijk-Genevaux PS, Gasteiger E, Bairoch A, Hulo N (2006) ScanProsite: detection of PROSITE signature matches and ProRule-associated functional and structural residues in proteins. Nucleic Acids Res 34:362–365

    Article  Google Scholar 

  33. Brodie R, Smith AJ, Rope RL, Tcherepanov V, Upton C (2004) Base-By-Base: single nucleotide-level analysis of whole viral genome alignments. BMC Bioinform 5:96–104

    Article  Google Scholar 

  34. Hillary W, Lin SH, Upton C (2011) Base-By-Base version 2: single nucleotide-level analysis of whole viral genome alignments. Microb Inform Exp 1:2–7

    Article  CAS  Google Scholar 

  35. Upton C, Slack S, Hunter AL, Ehlers A, Roper RL (2003) Poxvirus orthologous clusters: toward defining the minimum essential poxvirus genome. J Virol 77:7590–7600

    Article  CAS  Google Scholar 

  36. Upton C, Hogg D, Perrin D, Boone M, Harris NL (2000) Viral genome organizer: a system for analyzing complete viral genomes. Virus Res 70:55–64

    Article  CAS  Google Scholar 

  37. Ehleres A, Osborne J, Slack S, Roper RL, Upton C (2002) Poxvirus orthologous clusters (POCs). Bioinformatics 18:1544–1545

    Article  Google Scholar 

  38. Yang J, Yan R, Roy A, Xu D, Poisson J, Zhan Y (2015) The I-TASSER suite: protein structure and function prediction. Nat Methods 12:7–8

    Article  CAS  Google Scholar 

  39. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF Chimera- a visualization system for exploratory research and analysis. J Comput Chem 25:1605–1612

    Article  CAS  Google Scholar 

  40. Dobson L, Reményl I, Tusnády GE (2015) CCTOP: a consensus constrained topology prediction web server. Nucleic Acids Res 43:408–412

    Article  Google Scholar 

  41. Käll L, Krogh A, Sonnhammer ELL (2004) A combined transmembrane topology and signal peptide prediction method. J Mol Biol 338:1027–1036

    Article  Google Scholar 

  42. Frank K, Sipl MJ (2008) High-performance signal peptide prediction based on sequence alignment techniques. Bioinformatics 24:2172–2176

    Article  CAS  Google Scholar 

  43. Katoh K, Standley DM (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30:772–780

    Article  CAS  Google Scholar 

  44. Muhire BM, Varsani A, Martin DP (2014) SDT: a virus classification tool based on pairwise sequence alignment and identity calculation. PLoS ONE 9:e108277

    Article  Google Scholar 

  45. Kumar S, Stecher G, Tamura K (2016) MEGA: molecular evolutionary genetic analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874

    Article  CAS  Google Scholar 

  46. Chi X, Zeng X, Li W, Hao W, Li M, Huang X, Huang Y, Rock DL, Luo S, Wang S (2015) Genome analysis of orf virus isolates from goats in the Fujian province of southern China. Front Microbiol 6:e1135

    Article  Google Scholar 

  47. Magis C, van der Sloot AM, Serrano L, Notredame C (2012) An improved understanding of TNFL/TNFR interactions using structure-based classifications. Trends Biochem Sci 37:353–363

    Article  CAS  Google Scholar 

  48. MacEwan DJ (2002) TNF ligands and receptors—a matter of life and death. Br J Pharmacol 135:855–875

    Article  CAS  Google Scholar 

  49. Seet BT, Johnston JB, Brunetti CR, Barrett JW, Everett H, Cameron C, Sypula J, Nazarian SH, Lucas A, McFadden G (2003) Poxviruses and immune evasion. Annu Rev Immunol 2:377–423

    Article  Google Scholar 

  50. Chen N, Buller RML, Wall EM, Upton C (2000) Analysis of host response modifier ORFs of ectromelia virus, the causative agent of mousepox. Virus Res 66:155–173

    Article  CAS  Google Scholar 

  51. Alfonso CL, Tulman ER, Lu Z, Zsak L, Kutish GF, Rock DL (2000) The genome of fowlpox virus. J Virol 74:3815–3831

    Article  Google Scholar 

  52. Laidlaw SM, Skinner MA (2004) Comparison of the genome sequence of FP9, an attenuated, tissue culture-adapted European strain of Fowlpox virus, with those of virulent American and European viruses. J Gen Virol 85:305–322

    Article  CAS  Google Scholar 

  53. Born TL, Morrison LA, Esteban DJ, VandenBos T, Thebeau LG, Chen N, Spriggs MK, Sims JE, Buller RM (2000) A poxvirus protein that binds to and inactivates IL-18, and inhibits NK cell response. J Immunol 164:3246–3254

    Article  CAS  Google Scholar 

  54. Krumm B, Meng X, Wang Z, Deng J (2012) A unique bivalent binding and inhibition mechanism by the Yatapoxvirus interleukin 18 binding protein. PLoS Pathog 8:e1002876

    Article  CAS  Google Scholar 

  55. Offerman K, Carulei O, van der Walt AP, Douglass N, Williamson AL (2014) The complete genome sequences of poxviruses isolated from a penguin and a pigeon in South Africa and comparison to other sequenced avipoxviruses. BMC Genom 15:463–479

    Article  Google Scholar 

  56. Reading PC, Smith GL (2003) Vaccinia virus interleukin-18-binding protein promotes virulence by reduction gamma interferon production and natural killer and T-cell activity. J Virol 77:9960–9968

    Article  CAS  Google Scholar 

  57. Xiang Y, Bernard M (1999) IL-18 binding and inhibition of interferon γ induction by human poxvirus-encoded proteins. Proc Natl Acad Sci USA 96:11537–11542

    Article  CAS  Google Scholar 

  58. Sedimbi SK, Hägglöf T, Karlsson MCI (2013) IL-18 in inflammatory and autoimmune disease. Cell Mol Life Sci 24:4795–4808

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank the University of Florida Graduate Student Fellowship for providing financial support.

Author information

Authors and Affiliations

Authors

Contributions

PAT provided the northern sea otter lesion sample. ON isolated the virus using standard cell culture techniques. JMJ, KS, CU, SLT, TBW completed genome assembly and annotation. JMJ, TBW, KS, SLT, CU wrote the manuscript.

Corresponding author

Correspondence to Thomas B. Waltzek.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Additional information

Edited by William Dundon.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11262_2018_1594_MOESM1_ESM.pdf

Supplementary material 1—Fig. S1 Sea otterpox virus annotated genome. The SOPV-ELK genome is 127,879 bp, 68.7% A+T, encodes 132 predicted proteins, and has 2546 bp ITRs. The 4 genes contained within the ITRs are represented by the red arrows. The 49 Poxviridae core genes are represented by the green arrows. The 31 Chordopoxvirinae core genes are represented by the purple arrows. The 8 genes that are unique to the SOPV-ELK are represented by the blue arrows. The 9 genes that are only present in both the SOPV-ELK and PTPV-Aus are represented by the grey arrows. The remaining 31 non-core poxvirus genes are represented by the yellow arrows (PDF 166 KB)

11262_2018_1594_MOESM2_ESM.pdf

Supplementary material 2—Fig. S2 Amino acid percent similarity for 46 poxviruses. Sequence identity matrix showing the amino acid percent similarity of the SOPV-ELK to 45 poxviruses based on the concatenated amino acid (aa) sequences of 7 conserved genes: RNA polymerase subunit RPO147, RNA polymerase subunit RPO132, RNA polymerase-associated RAP94, mRNA capping enzyme large subunit, virion major core protein P4a, early transcription factor VETFL, and NTPase. See Table 1 for virus abbreviations (PDF 429 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jacob, J.M., Subramaniam, K., Tu, SL. et al. Complete genome sequence of a novel sea otterpox virus. Virus Genes 54, 756–767 (2018). https://doi.org/10.1007/s11262-018-1594-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11262-018-1594-8

Keywords

Navigation