Skip to main content

Advertisement

Log in

Circuit assemblages derived from net dinucleotide values provide a succinct identity for the HIV-1 genome and each of its genes

  • Published:
Virus Genes Aims and scope Submit manuscript

Abstract

Dinucleotide composition has been recognized as a species-specific characteristic of organisms for more than 20 years. Lang (2000, Bioinformatics, 16, 212–221), found that in Monilinia rRNA a species-specific identity is conserved when dinucleotide counts are compressed into net dinucleotide counts (e.g., 50AC +  20CA =  30nAC) and clusters of net dinucleotides of equal value (e.g., 30nAC +  30nCT +  30nTA =  30ACTA) which were called circuits. This study evaluates circuit assemblages (CAs)—the collection of all net dinucleotide circuits derived from a sequence—in a diverse set of 110 HIV-1 genomes. The circuit composition, which is often based on ≤ 15% of the total dinucleotides of a sequence, uniquely characterizes each gene and genome, although the pairwise similarity of the sequences is as low as 70%. Variations in net dinucleotide distributions are associated with structural and functional features of the genome and its proteins. Circuit values of the env signal sequence are different between subtypes that have remained localized and those that have become pandemic. CAs of complete genomes of HIV-1 are similar to other retro-transcribing viruses, and distinct from viroids and single- and double-stranded DNA and RNA viruses. CAs provide a succinct, quantitative, and species-specific description of DNA composition that is consistent with the results of traditional analytic methods at multiple levels of genome organization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. R. Nussinov, Nucleic Acids Res. 12, 1749–1763 (1984)

    Article  PubMed  CAS  Google Scholar 

  2. S. Karlin, Curr. Opin. Microbiol. 1, 598–610 (1998)

    Article  PubMed  CAS  Google Scholar 

  3. A. Campbell, J. Mrazek, S. Karlin, Proc. Natl. Acad. Sci. USA 96, 9184–9189 (1999)

    Article  PubMed  CAS  Google Scholar 

  4. S. Karlin, L. Brocchieri, J. Mrazek, A.M. Campbell, A.M. Spormann, Proc. Natl. Acad. Sci. USA 96, 9190–9195 (1999)

    Article  PubMed  CAS  Google Scholar 

  5. A.J. Gentles, S. Karlin, Genome Res. 11, 540–546 (2001)

    Article  PubMed  CAS  Google Scholar 

  6. K. Jabbari, G. Bernardi, Gene 333, 143–149 (2004)

    Article  PubMed  CAS  Google Scholar 

  7. D.M. Lang, Bioinformatics 16, 212–221 (2000)

    Article  PubMed  CAS  Google Scholar 

  8. H. Nakashima, K. Nishikawa, T. Ooi, DNA Res. 4, 185–192 (1997)

    Article  PubMed  CAS  Google Scholar 

  9. H. Nakashima, M. Ota, K. Nishikawa, T. Ooi, DNA Res. 5, 251–259 (1998)

    Article  PubMed  CAS  Google Scholar 

  10. R. Sandberg, G. Winberg, C. Branden, A. Kaske, I. Ernberg, J. Coster, Genome Res. 11, 1404–1409 (2001)

    Article  PubMed  CAS  Google Scholar 

  11. O.N. Reva, B. Tummler, BMC Bioinformatics 6, 251 (2005)

    Article  PubMed  CAS  Google Scholar 

  12. F. Gao, E. Bailes, D.L. Robertson, Y. Chen, C.M. Rodenburg, S.F. Michael, L.B. Cummins, L.O. Arthur, M. Peeters, G.M. Shaw, P.M. Sharp, B.H. Hahn, Nature 397, 436–441 (1999)

    Article  PubMed  CAS  Google Scholar 

  13. S. Corbet, M.C. Muller-Trutwin, P. Versmisse, S. Delarue, A. Ayouba, J. Lewis, S. Brunak, P. Martin, F. Brun-Vezinet, F. Simon, F. Barre-Sinoussi, P. Mauclere, J. Virol. 74, 529–534 (2000)

    PubMed  CAS  Google Scholar 

  14. J. Mokili, B. Korber, J. Neurovirol. 11(Suppl 1), 66–75 (2005)

    PubMed  Google Scholar 

  15. P. Lemey, O.G. Pybus, A. Rambaut, A.J. Drummond, D.L. Robertson, P. Roques, M. Worobey, A.M. Vandamme, Genetics 167, 1059–1068 (2004)

    Article  PubMed  CAS  Google Scholar 

  16. M.M. Vanden Haesevelde, M. Peeters, W. Janssens, G.M. Shaw, G. Jannes, G. vanderGroen, E. Saman, Virology 221, 346–350 (1996)

    Article  Google Scholar 

  17. http://hiv-web.lanl.gov/components/hiv-db/combined_search_s_tree/search.html

  18. http://hiv-web.lanl.gov/content/hiv-db/ALIGN_03/ALIGN-INDEX.html

  19. B. Korber, B.T. Foley, C. Kuiken, S.K. Pillai, J.G. Sodroski, in Human Retroviruses and AIDS 1998, Theoretical Biology and Biophysics Group ed. by B. Korber, C.L. Kuiken, B. Foley, B. Hahn, F. McCutchan, J.W. Mellors, J. Sodroski (LANL, Los Alamos, NM, 1998) pp. III-102–111

  20. D.V. Faulkner, J. Jurka, Trends Biochem. Sci. 13, 321–322 (1988)

    Article  PubMed  CAS  Google Scholar 

  21. http://www.fon.hum.uva.nl/Service/Statistics/Wilcoxon_Test.html

  22. M.A. Massiah, D. Worthylake, A.M. Christensen, W.I. Sundquist, C.P. Hill, M.F. Summers, Protein Sci. 5, 2391–2398 (1996)

    Article  PubMed  CAS  Google Scholar 

  23. C. Tang, Y. Ndassa, M.F. Summers, Nat. Struct. Biol. 9, 537–543 (2002)

    PubMed  CAS  Google Scholar 

  24. R.K. Gitti, B.M. Lee, J. Walker, M.F. Summers, S. Yoo, W.I. Sundquist, Science 273, 231–235 (1966)

    Article  Google Scholar 

  25. D. Braaten, H. Ansari, J. Luban, J Virol 71, 2107–2113 (1997)

    PubMed  CAS  Google Scholar 

  26. H. Javanbakht, R. Halwani, S. Cen, J. Saadatmand, K. Musier-Forsyth, H.G. Gottlinger, L. Kleiman, J. Biol. Chem. 278, 27644–27651 (2004)

    Article  Google Scholar 

  27. A. Land, D. Zonneveld, I. Braakman, FASEB J. 17, 1058–1067 (2003)

    Article  PubMed  CAS  Google Scholar 

  28. M. Dettenhofer, X.F. Yu, J. Biol. Chem. 276, 5985–5991 (2001)

    Article  PubMed  CAS  Google Scholar 

  29. B. Martoglio, R. Graf, B. Dobberstein, EMBO J. 16, 6636–6645 (1997)

    Article  PubMed  CAS  Google Scholar 

  30. Y. Li, L. Luo, D.Y. Thomas, C.Y. Kang, Virology 272, 417–428 (2000)

    Article  PubMed  CAS  Google Scholar 

  31. E.O. Freed, Somat. Cell Mol. Genet. 26, 13–33 (2001)

    Article  PubMed  CAS  Google Scholar 

  32. C. Perales, L. Carrasco, M.E. Gonzalez, Biochim. Biophys. Acta 1743, 169–75 (2005)

    Article  PubMed  CAS  Google Scholar 

  33. http://www.ncbi.nlm.nih.gov/genomes/VIRUSES/viruses.html

  34. T. Rein, H. Zorbas, M.L. DePamphilis, Mol. Cell Biol. 17, 416–426 (1997)

    PubMed  CAS  Google Scholar 

  35. P. Schattner, Nucleic Acids Res. 30, 2076–2082 (2002)

    Article  PubMed  CAS  Google Scholar 

  36. K. Yamagishi, T. Oshima, Y. Masuda, T. Ara, S. Kanaya, H. Mori, DNA Res. 9, 19–24 (2002)

    Article  PubMed  CAS  Google Scholar 

  37. H. Nakashima, S. Fukuchi, K. Nishikawa, J. Biochem. (Tokyo) 133, 507–513 (2003)

    CAS  Google Scholar 

Download references

Acknowledgments

Dr. John Palfreyman made many helpful suggestions for the manuscript. Doug MacLean provided technical assistance. The support of the University of Abertay-Dundee made the work possible. All are deeply appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dorothy M. Lang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lang, D.M. Circuit assemblages derived from net dinucleotide values provide a succinct identity for the HIV-1 genome and each of its genes. Virus Genes 36, 11–26 (2008). https://doi.org/10.1007/s11262-007-0128-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11262-007-0128-6

Keywords

Navigation