Skip to main content
Log in

Organic and mechanical properties of Cervidae antlers: a review

  • Review Article
  • Published:
Veterinary Research Communications Aims and scope Submit manuscript

Abstract

There is a resurgence of interest in the study of deer antlers. Recent research advocates their potential for use in bone xenografts. Using this working hypothesis, we can formulate many questions: do antlers really present unique or interesting mechanical properties, and if so, which factors affect these properties? Many other issues, including tissue compatibility, could be discussed; however, this article will focus on the biomechanical features of antlers. This paper reviews some answers found within current published material, and could help determine the optimal selection of some antlers for further experimental studies and clinical trials. Some general elements like anatomy and histology of deer antlers are briefly summarised. This paper will attempt to define the fundamental differences between skeletal bone and antler bone in terms of their organic and mechanical properties. We will then compare the previously published data, which details the mechanical properties of antlers from different species of Cervidae, by reviewing several aspects such as: sex; geographical situation; morphology; hydration state; and mineral composition. Some findings emerge: mechanical properties do not vary with gender or latitude, and the most important determining factor appears to be the species, alongside morphology and use of antlers. The state of hydration and mineral composition also has an influence on the mechanical properties of Cervidae antlers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Blob RW, Labarbera M (2001) Correlates of variation in deer antler stiffness: age, mineral content, intra-antler location, habitat, and phylogeny. Biol J Linn Soc 74:113–120

    Article  Google Scholar 

  • Blob RW, Snelgrove JM (2006) Antler stiffness in moose (Alces alces): correlated evolution of bone function and material properties? J Morphol 267:1075–1086

    Article  PubMed  Google Scholar 

  • Chapman D (1975) Antlers-bones of contention. Mammal Rev 5:121–172

    Article  Google Scholar 

  • Chen PY, Lin AY, Lin YS, Seki Y, Stokes AG, Peyras J, Olevsky EA, Meyers MA, McKittrick J (2008) Structure and mechanical properties of selected biological materials. J Mech Behav Biomed Mater 1:208–226

    Article  PubMed  Google Scholar 

  • Chen PY, Stokes AG, Mckittrick J (2009) Comparison of the structure and mechanical properties of bovine femur bone and antler of the north American elk (Cervus elaphus canadensis. Acta Biomater 5:693–706

    Article  PubMed  Google Scholar 

  • Clutton-Brock T (1982) The function of antlers. Behavior 79:108–124

    Article  Google Scholar 

  • Crigel M-H, Balligand M, Heinen E (2001) Les bois de cerf: revue de littérature scientifique. Ann Med Vet 145:25–38

  • Currey JD (1979) Mechanical properties of bone tissues with greatly differing functions. J Biomech 12:313–319

    Article  CAS  PubMed  Google Scholar 

  • Currey JD (1984) Comparative mechanical properties and histology of bone. Am Zool 24:5–12

    Article  Google Scholar 

  • Currey JD (1987) The evolution of the mechanical properties of amniote bone. J Biomech 20(11-12):1035–1044

  • Currey JD (1988) The effect of porosity and mineral content on the Young’s modulus of elasticity of compact bone. J Biomech 21:131–139

    Article  CAS  PubMed  Google Scholar 

  • Currey JD (1990) Physical characteristics affecting the tensile failure properties of compact bone. J Biomech 23:837–844

    Article  CAS  PubMed  Google Scholar 

  • Currey JD (1999) The design of mineralised hard tissues for their mechanical functions. J Exp Biol 202:3285–3294

    CAS  PubMed  Google Scholar 

  • Currey JD (2002) Bones: Structure and Mechanics. Princeton, Princeton University Press

    Google Scholar 

  • Currey JD, Landete-Castillejos T, Estevez J, Ceacero F, Olguin A, Garcia A, Gallego L (2009) The mechanical properties of red deer antler bone when used in fighting. J Exp Biol 212:3985–3993

    Article  CAS  PubMed  Google Scholar 

  • Espmark Y (1964) Rutting behavior in reindeer (Rangifer tarandus. Anim Behav 12:159–163

    Article  Google Scholar 

  • Geist V (1966) The evolution of horn-like organs. Behavior 27:175–214

    Article  Google Scholar 

  • Gomez S, Garcia AJ, Luna S, Kierdorf U, Kierdorf H, Gallego L, et al. (2013) Labeling studies on cortical bone formation in the antlers of red deer (Cervus elaphus). Bone 52:506–515

    Article  CAS  PubMed  Google Scholar 

  • Goss RJ (1983) Deer antlers: regeneration, function and evolution. Academic Press, New York

    Google Scholar 

  • Gupta HS, Krauss S, Kerschnitzki M, Karunaratne A, Dunlop JW, Barber AH, et al. (2013) Intrafibrillar plasticity through mineral/collagen sliding is the dominant mechanism for the extreme toughness of antler bone. J Mech Behav Biomed Mater 28:366–382

    Article  CAS  PubMed  Google Scholar 

  • Kierdorf U, Flohr S, Gomez S, Landete-Castillejos T, Kierdorf H (2013) The structure of pedicle and hard antler bone in the European roe deer (Capreolus capreolus): a light microscope and backscattered electron imaging study. J Anat 223:364–384

    Article  PubMed  PubMed Central  Google Scholar 

  • Kitchener AC (1991) The evolution and mechanical design of horns and antlers. In: Rayner JM WKJ (ed) Biomechanics in evolution. Cambridge University Presse, Cambridge UK, pp. 229–253

  • Kitchener AC (2000) Fighting and the mechanical design of horns and antlers. In: Domenici P, Blake RW (eds) Biomechanics in animal behaviour. BIOS Scientific Publishers, Oxford

    Google Scholar 

  • Krauss S, Fratzl P, Seto J, Currey JD, Estevez JA, Funari SS, et al. (2009) Inhomogeneous fibril stretching in antler starts after macroscopic yielding: indication for a nanoscale toughening mechanism. Bone 44:1105–1110

    Article  PubMed  Google Scholar 

  • Krauss S, Wagermaier W, Estevez JA, Currey JD, Fratzl P (2011) Tubular frameworks guiding orderly bone formation in the antler of the red deer (Cervus elaphus). J Struct Biol 175:457–464

    Article  PubMed  Google Scholar 

  • Kulin RM, Chen P, Jiang F, Vecchio KS (2011) A study of the dynamic compressive behavior of elk antler. Mater Sci Eng C 31:1030–1041

    Article  CAS  Google Scholar 

  • Landete-Castillejos T, Currey JD, Estevez JA, Gaspar-Lopez E, Garcia A, Gallego L (2007) Influence of physiological effort of growth and chemical composition on antler bone mechanical properties. Bone 41:794–803

    Article  CAS  PubMed  Google Scholar 

  • Landete-Castillejos T, Currey JD, Estevez JA, Fierro Y, Calatayud A, Ceacero F, Garcia AJ, Gallego L (2010) Do drastic weather effects on diet influence changes in chemical composition, mechanical properties and structure in deer antlers? Bone 47:815–825

    Article  CAS  PubMed  Google Scholar 

  • Launey ME, Chen PY, McKittrick J, Ritchie RO (2010) Mechanistic aspects of the fracture toughness of elk antler bone. Acta Biomater 6:1505–1514

    Article  CAS  PubMed  Google Scholar 

  • Leslie DM Jr, Jenkins K (1985) Rutting mortality among male Roosevelt elk. J Mammal 66:163–164

    Article  Google Scholar 

  • Lin AYM, Meyers MA, Vecchio KS (2006) Mechanical Properties and structure of Strombus gigas, Tridacna Gigas and Haliotis rufescens Sea shells: a comparative study. Mater Sci 26:1380–1389

    CAS  Google Scholar 

  • Lincoln G (1992) The biology of antlers. J Zool (Lond) 226:517–528

    Article  Google Scholar 

  • Lincoln GA, Tyler NJ (1999) Role of oestradiol in the regulation of the seasonal antler cycle in female reindeer, Rangifer tarandus. J Reprod Fertil 115:167–174

    Article  CAS  PubMed  Google Scholar 

  • Rajaram A, Ramanathan N (1982) Tensile properties of antler bone. Calcif Tissue Int 34:301–305

  • Reilly DT, Burstein AH (1974) Review article. The mechanical properties of cortical bone. J Bone Joint Surg Am 56:1001–1022

    Article  CAS  PubMed  Google Scholar 

  • Reimers E (1993) Antlerless females among reindeer and caribou. Can J Zool 71:1319–1325

    Article  Google Scholar 

  • Rho JY, Kuhn-Spearing L, Zioupos P (1998) Mechanical properties and the hierarchical structure of bone. Med Eng Phys 20:92–102

    Article  CAS  PubMed  Google Scholar 

  • Rolf HJ, Enderle A (1999) Hard fallow deer antler: a living bone till antler casting? Anat Rec 255:69–77

    Article  CAS  PubMed  Google Scholar 

  • Shah SR, DesJardins JD, Blob RW (2008) Antler stiffness in caribou (Rangifer tarandus): testing variation in bone material properties between males and females. Zoology (Jena) 111:476–482

    Article  Google Scholar 

  • Skedros JGDP, Bloebaum RD (1995) Hypermineralized peripheral lamellae in primary osteons of deer antler: potential analogues of cement lines in mammalian secondary bone. J Bone Miner Res 10:441

    Google Scholar 

  • Skedros JG, Keenan KE, Cooper DM, Bloebaum RD (2014) Histocompositional organization and toughening mechanisms in antler. J Struct Biol 187:129–148

    Article  PubMed  Google Scholar 

  • Spatz H-Ch, O’Leary EJ, Vincent JFV, (1996) Young's moduli and shear moduli in cortical bone. Proc R Soc B Biol Sci 263(1368):287–294

  • Wang X, Bank RA, TeKoppele JM, Agrawal CM (2001) The role of collagen in determining bone mechanical properties. Journal of orthopaedic research: official publication of the Orthopaedic Research Society 19:1021–1026

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. P. Picavet.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Picavet, P.P., Balligand, M. Organic and mechanical properties of Cervidae antlers: a review. Vet Res Commun 40, 141–147 (2016). https://doi.org/10.1007/s11259-016-9663-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11259-016-9663-8

Keywords

Navigation