Skip to main content

Advertisement

Log in

Tree hydrological niche acclimation through ontogeny in a seasonal Amazon forest

  • Published:
Plant Ecology Aims and scope Submit manuscript

Abstract

How tropical plants cope with water availability has important implications for forest resilience, as severe drought events are expected to  increase with climate change. Tree size has emerged as a major axis of drought vulnerability. To understand how Amazon tree species are distributed along size-linked gradients of water and light availability, we tested the niche acclimation hypothesis that there is a developmental gradient in ontogenetic shift in embolism resistance and tree water-use efficiency among tree species that occurs along the understory-overstory gradient. We evaluated ontogenetic differences in the intrinsic water-use efficiency (iWUE) and xylem hydraulic traits of abundant species in a seasonal tropical forest in Brazil. We found that saplings of dominant overstory species start with a high degree of embolism resistance to survive in a dense understory environment where competition for water and light among smaller trees can be intense during the prolonged dry season. Vulnerability to embolism consistently changed with ontogeny and varied with tree species' stature (maximum height): mature individuals of larger species displayed increased vulnerability, whereas smaller species displayed unchanging or even increased resistance at the mature stage. The ability to change drought-resistance strategies (vulnerability to embolism) through ontogeny was positively correlated with ontogenetic increase in iWUE. Ecologically, overstory trees appear to shift from being hydraulically drought resilient to persisting under dry soil surface layer conditions to being more likely physiological drought avoiders as adults when their roots reach wetter and deeper soil layers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Anderegg WRL, Klein T, Bartlett M, Sack L, Pellegrini AFA, Choat B (2016) Meta-analysis reveals that hydraulic traits explain cross-species patterns of drought-induced tree mortality across the globe. PNAS 113:2–7

    Article  Google Scholar 

  • Barros FV, Bittencourt PRL, Brum M, Restrepo-Coupe N, Pereira L, Teodoro GS, Saleska SR, Borma LS, Christoffersen BO, Penha D, Alves LF, Lima AJN, Carneiro VMC, Gentine P, Lee J, Aragão LEOC, Ivanov V, Leal LSM, Araujo AC, Oliveira RS (2019) Hydraulic traits explain differential responses of Amazonian forests to the 2015 El Nino-induced drought. New Phytol 223:1253–1266

    Article  CAS  PubMed  Google Scholar 

  • Bittencourt PRL, Oliveira RS, da Costa ACL, Giles AL, Coughlin I, Costa PB, Bartholomew DC, Ferreira LV, Vasconcelos SS, Barros FV, Junior JAS, Oliveira AAR, Mencuccini M, Meir P, Rowland L (2020) Amazonia trees have limited capacity to acclimate plant hydraulic properties in response to long-term drought. Glob Change Biol 26:3569–3584

    Article  Google Scholar 

  • Bittencourt PR, Pereira L, Oliveira RS (2018) Pneumatic method to measure plant xylem embolism. Bio-Protoc 8(20):e3059–e3059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brienen RJW, Gloor E, Clerici S, Newton R, Arppe L, Boom A, Bottrell S, Callaghan M, Heaton T, Helama S, Helle G, Leng MJ, Mielikäinen K, Oinonen M, Timonen M (2017) Tree height strongly affects estimates of water-use efficiency responses to climate and CO2 using isotopes. Nat Commun 8:1–10. https://doi.org/10.1038/s41467-017-00225-z

    Article  CAS  Google Scholar 

  • Brodribb TJ, Holbrook NM, Gutierrez MV (2002) Hydraulic and photosynthetic co-ordination in seasonally dry tropical forest trees. Plant Cell Environ 25(11):1435–1444

    Article  Google Scholar 

  • Brum M, Vadeboncoeur MA, Ivanov V, Asbjornsen H, Saleska S, Alves LF, Penha D, Dias JD, Aragão LE, Barros F, Bittencourt P, Pereira L, Oliveira RS (2019) Hydrological niche segregation defines forest structure and drought tolerance strategies in a seasonal Amazon forest. J Ecol 107(1):318–333

  • Cernusak LA, Marshall JD, Comstock JP, Balster NJ (2001) Carbon isotope discrimination in photosynthetic bark. Oecologia 128:24–35

    Article  PubMed  Google Scholar 

  • Choat B, Jansen S, Brodribb TJ, Cochard H, Delzon S, Bhaskar R, Bucci SJ, Feild TS, Gleason SM, Hacke UG, Jacobsen AL, Lens F, Maherali H, Martínez-Vilalta J, Mayr S, Mencuccini M, Mitchell PJ, Nardini A, Pittermann J, Pratt RB, Sperry JS, Westoby M, Wright IJ, Zanne AE (2012) Global convergence in the vulnerability of forests to drought. Nature 491:752–755

    Article  CAS  PubMed  Google Scholar 

  • Cosme LHM, Schietti J, Costa FRC, Oliveira RS (2017) The importance of hydraulic architecture to the distribution patterns of trees in a central Amazonian forest. New Phytol 215:113–125

    Article  PubMed  Google Scholar 

  • Costa FR, Schietti J, Stark SC, Smith MN (2023) The other side of tropical forest drought: do shallow water table regions of Amazonia act as large-scale hydrological refugia from drought? New Phytol 237(3):714–733

    Article  PubMed  Google Scholar 

  • Dayrell RLC, Arruda AJ, Pierce S, Negreiros D, Meyer PB, Lambers H, Silveira FAO (2018) Ontogenetic shifts in plant ecological strategies. Funct Ecol 32:2730–2741

    Article  Google Scholar 

  • Ding Y, Nie Y, Chen H, Wang K, Querejeta JI (2021) Water uptake depth is coordinated with leaf water potential, water-use efficiency and drought vulnerability in karst vegetation. New Phytol 229:1339–1353

    Article  CAS  PubMed  Google Scholar 

  • Domingues TF, Berry JA, Martinelli LA, Ometto JPHB, Ehleringer JR (2005) Parameterization of canopy structure and leaf-level gas exchange for an Eastern Amazonian tropical rain forest (Tapajós national forest, Pará, Brazil). Earth Interact 9:1–23

    Article  Google Scholar 

  • Draper FC, Costa FRC, Arellano G et al (2021) Amazon tree dominance across forest strata. Nat Ecol Evol. https://doi.org/10.1038/s41559-021-01418-y

    Article  PubMed  Google Scholar 

  • Engelbrecht BM, Comita LS, Condit R, Kursar TA, Tyree MT, Turner BL, Hubbell SP (2007) Drought sensitivity shapes species distribution patterns in tropical forests. Nature 447(7140):80–82

    Article  CAS  PubMed  Google Scholar 

  • Esquivel-Muelbert A, Baker TR, Dexter KG et al (2016) Seasonal drought limits tree species across the Neotropics. Ecography 40:618–629

    Article  Google Scholar 

  • Esquivel-Muelbert A, Phillips OL, Brienen RJW et al (2020) Tree mode of death and mortality risk factors across Amazon forests. Nat Commun 11:5515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Farquhar GD, O’Leary MH, Berry JA (1982) On the relationship between carbon isotope discrimination and the intercellular carbon dioxide concentration in leaves. Aust J Plant Physiol 9:121–137

    CAS  Google Scholar 

  • Farquhar GD, Lloyd J (1993). Carbon and oxygen isotope effects in the exchange of carbon dioxide between terrestrial plants and the atmosphere. In: Stable isotopes and plant carbon-water relations. Academic Press, pp 47–70

  • Fernández-de-Uña L, Martínez‐Vilalta J, Poyatos R, Mencuccini M, McDowell NG (2023) The role of height‐driven constraints and compensations on tree vulnerability to drought. New Phytol 239(6):2083–2098

  • Fontes CG, Fine PVA, Wittmann F, Bittencourt PRL, Piedade MTF, Higuchi N, Chambers JQ, Dawson TE (2020) Convergent evolution of tree hydraulic traits in Amazonian habitats: implications for community assemblage and vulnerability to drought. New Phytol 228:106–120

    Article  PubMed  Google Scholar 

  • Fonti P, Von Arx G, García-González I, Eilmann B, Sass-Klaassen U, Gärtner H, Eckstein D (2010) Studying global change through investigation of the plastic responses of xylem anatomy in tree rings. New Phytol 185:42–53

    Article  PubMed  Google Scholar 

  • Fox J, Weisberg S (2011) An R companion to applied regression, second edition. Sage, Thousand Oaks. http://socserv.socsci.mcmaster.ca/jfox/Books/Companion

  • Franklin O, Harrison SP, Dewar R, Farrior CE, Brännström Å, Dieckmann U, Pietsch S, Falster D, Cramer W, Loreau M et al. (2020) Organizing principles for vegetation dynamics. Nat plant 6(5):444–453

  • Garcia MN, Ferreira MJ, Ivanov V, Dos Santos VA, Ceron JV, Guedes AV, Saleska SR, Oliveira RS (2021) Importance of hydraulic strategy trade-offs in structuring response of canopy trees to extreme drought in central Amazon. Oecologia 197:13–24

    Article  PubMed  Google Scholar 

  • Giardina F, Konings AG, Kennedy D, Alemohammad SH, Oliveira RS, Uriarte M, Gentine P (2018) Tall Amazonian forests are less sensitive to precipitation variability. Nat Geosci 11(6):405–409

    Article  CAS  Google Scholar 

  • Henn JJ, Damschen EI (2021) Plant age affects intraspecific variation in functional traits. Plant Ecol. https://doi.org/10.1007/s11258-021-01136-2

    Article  Google Scholar 

  • Ivanov VY, Hutyra LR, Wofsy SC, Munger JW, Saleska SR, De Oliveira RC, De Camargo PB (2012) Root niche separation can explain avoidance of seasonal drought stress and vulnerability of overstory trees to extended drought in a mature Amazonian forest. Water Resour Res 48:1–21

    Article  Google Scholar 

  • Kotowska MM, Link RM, Röll A, Hertel D, Hölscher D, Waite P-A, Moser G, Tjoa A, Leuschner C, Schuldt B (2021) Effects of wood hydraulic properties on water use and productivity of tropical rainforest trees. Front for Glob Change 3:1–14

    Article  Google Scholar 

  • Lasky JR, Bachelot B, Muscarella R, Schwartz N, Forero-Montaña J, Nytch CJ, Swenson NG, Thompson J, Zimmerman JK, Uriarte M (2015) Ontogenetic shifts in trait-mediated mechanisms of plant community assembly. Ecology 96:2157–2169

    Article  PubMed  Google Scholar 

  • Lenth R (2019) emmeans: estimated marginal means, aka least-squares means. R package version 1.4.1. https://CRAN.R-project.org/package=emmeans

  • Liu H, Gleason SM, Hao G, Hua L, He P, Goldstein G, Ye Q (2019) Hydraulic traits are coordinated with maximum plant height at the global scale. Sci Adv 5:eaav1332

  • Longo M (2013). Amazon forest response to changes in rainfall regime: results from an individual-based dynamic vegetation model. Dissertation Thesis, Harvard University

  • Longo M, Keller M, dos-Santos MN, Leitold V, Pinagé ER, Baccini A, Saatchi S, Nogueira EM, Batistella M, Morton DC (2016) Aboveground biomass variability across intact and degraded forests in the Brazilian Amazon. Glob Biogeochem Cycles 30:1639–1660https://doi.org/10.1002/2016GB005465

  • Medina E, Minchin P (1980) Stratification of δ13C values of leaves in Amazonian rain forests. Oecologia 45:377–378

    Article  CAS  PubMed  Google Scholar 

  • Markewitz D, Devine S, Davidson EA, Brando P, Nepstad DC (2010) Soil moisture depletion under simulated drought in the Amazon: impacts on deep root uptake. New Phytol 187:592–607

    Article  PubMed  Google Scholar 

  • Mathias JM, Thomas RB (2021) Global tree intrinsic water use efficiency is enhanced by increased atmospheric CO2 and modulated by climate and plant functional types. Proc Natl Acad Sci 118(7):e2014286118

  • Nepstad DC, Tohver IM, Ray D, Moutinho P, Cardinot G (2007) Mortality of large trees and lianas following experimental drought in an Amazon forest. Ecology 88(9):2259–2269

    Article  PubMed  Google Scholar 

  • McCarroll D, Loader NJ (2004) Stable isotopes in tree rings. Quat Sci Rev 23:771–801

    Article  Google Scholar 

  • McDowell NG, Allen CD (2015) Darcy’s law predicts widespread forest mortality under climate warming. Nat Clim Chang 5:669–672. https://doi.org/10.1038/nclimate2641

    Article  Google Scholar 

  • McDowell NG, Bond BJ, Dickman LT, Ryan MG, Whitehead D, Meinzer FC, Niinemets Ü (2011) Relationships between tree height and carbon isotope discrimination size- and age-related changes in tree structure and functionhttps://doi.org/10.1007/978-94-007-1242-3_10

  • McDowell N, Allen CD, Anderson-Teixeira K, Brando P, Brienen R, Chambers J, Christoffersen B, Davies S, Doughty C, Duque A, Espirito-Santo F (2018) Drivers and mechanisms of tree mortality in moist tropical forests. New Phytol 219(3):851–869

    Article  PubMed  Google Scholar 

  • Meinzer FC, Johnson DM, Lachenbruch B, McCulloh KA, Woodruff DR (2009) Xylem hydraulic safety margins in woody plants: coordination of stomatal control of xylem tension with hydraulic capacitance. Funct Ecol 23:922–930

    Article  Google Scholar 

  • Meinzer FC, McCulloh KA (2013) Xylem recovery from drought-induced embolism: where is the hydraulic point of no return? Tree Physiol 33(4):331–334

    Article  PubMed  Google Scholar 

  • Mencuccini M (2003) The ecological significance of long-distance water transport: Short-term regulation, long-term acclimation and the hydraulic costs of stature across plant life forms. Plant Cell Environ 26:163–182

    Article  Google Scholar 

  • Mencuccini M, Manzoni S, Christoffersen B (2019) Modelling water fluxes in plants: from tissues to biosphere. New Phytol 222:1207–1222

    Article  PubMed  Google Scholar 

  • Nardini A, Casolo V, Dal Borgo A, Savi T, Stenni B, Bertoncin P, Zini L, Mcdowell NG (2016) Rooting depth, water relations and non-structural carbohydrate dynamics in three woody angiosperms differentially affected by an extreme summer drought. Plant Cell Environ 39:618–627

    Article  CAS  PubMed  Google Scholar 

  • Oliveira RS, Costa FR, van Baalen E, de Jonge A, Bittencourt PR, Almanza Y, Barros FD, Cordoba EC, Fagundes MV, Garcia S, Guimaraes ZT (2019) Embolism resistance drives the distribution of Amazonian rainforest tree species along hydro-topographic gradients. New Phytol 221(3):1457–1465

    Article  PubMed  Google Scholar 

  • Oliveira RS, Eller CB, Barros FDV, Hirota M, Brum M, Bittencourt P (2021) Linking plant hydraulics and the fast-slow continuum to understand resilience to drought in tropical ecosystems. New Phytol. https://doi.org/10.1111/nph.17266

    Article  PubMed  Google Scholar 

  • Oliveira-Junior RC, Correa JRV (2001) Caracterização dos solos do município de Belterra, Estado do Pará. Embrapa Amaz Orient Doc 88:39

    Google Scholar 

  • Olson ME, Soriano D, Rosell JA, Anfodillo T, Donoghue MJ, Edwards EJ, León-Gómez C, Dawson T, Camarero Martínez JJ, Castorena M, Echeverría A, Espinosa CI, Fajardo A, Gazol A, Isnard S, Lima RS, Marcati CR, Méndez-Alonzo R (2018) Plant height and hydraulic vulnerability to drought and cold. Proc Natl Acad Sci 115:7551–7556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ometto JPHB, Flanagan LB, Martinelli LA, Moreira MZ, Higuchi N, Ehleringer JR (2002) Carbon isotope discrimination in forest and pasture ecosystems of the Amazon Basin, Brazil. Glob Biogeochem Cycles 16:56-1–56-10

  • Pammenter NW, Vander Willigen C (1998) A mathematical and statistical analysis of the curves illustrating the vulnerability of xylem to cavitation. Tree Physiol 18(8–9):589–593. https://doi.org/10.1093/treephys/18.8-9.589

    Article  PubMed  Google Scholar 

  • Pataki DE, Ehleringer JR, Flanagan LB, Yakir D, Bowling DR, Still CJ, Buchmann N, Kaplan JO, Berry JA (2003) The application and interpretation of Keeling plots in terrestrial carbon cycle research 17(1)

  • Pereira L, Bittencourt PRL, Pacheco VS, Miranda MT, Zhang Y, Oliveira RS, Groenendijk P, Machado EC, Tyree MT, Jansen S, Rowland L, Ribeiro RV (2020) The pneumatron: an automated pneumatic apparatus for estimating xylem vulnerability to embolism at high temporal resolution. Plant Cell Environ 43:131–142

    Article  CAS  PubMed  Google Scholar 

  • Pereira L, Oliveira RS, Pereira L, Bittencourt PRL, Oliveira RS, Junior MBM, Barros F V (2016) Plant pneumatics : stem air flow is related to embolism—new perspectives on methods in plant hydraulics Methods Plant pneumatics : stem air flow is related to embolism—new perspectives on methods in plant hydraulics. New Phytol 357–370

  • Pinheiro J, Bates D, DebRoy S, Sarkar D, R Core Team (2021) _nlme: linear and nonlinear mixed effects models_. R package version 3.1-152. https://CRAN.R-project.org/package=nlme

  • Power SC, Verboom GA, Bond WJ, Cramer MD (2019) Does a tradeoff between trait plasticity and resource conservatism contribute to the maintenance of alternative stable states? New Phytol 223:1809–1819

    Article  CAS  PubMed  Google Scholar 

  • Pyle EH, Santoni GW, Nascimento HEM, Hutyra LR, Vieira S, Curran DJ, Van Haren J, Saleska SR, Chow VY, Camargo PB, Laurance WF, Wofsy SC (2009) Dynamics of carbon, biomass, and structure in two Amazonian forests. J Geophys Res Biogeosci 114:1–20

    Google Scholar 

  • R Core Team (2017) R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. https://www.R-project.org/

  • Reich PB (2000) Do tall trees scale physiological heights? Trends Ecol Evol 15:41–42

    Article  CAS  PubMed  Google Scholar 

  • Restrepo-Coupe N, Levine NM, Christoffersen BO, Albert LP, Wu J, Costa MH, Galbraith D, Imbuzeiro H, Martins G, da Araujo AC, Malhi YS, Zeng X, Moorcroft P, Saleska SR (2016) Do dynamic global vegetation models capture the seasonality of carbon fluxes in the Amazon basin? A data-model intercomparison. Glob Chang Biol 1–18

  • Restrepo-Coupe N, da Rocha HR, Hutyra LR, da Araujo AC, Borma LS, Christoffersen B, Cabral OMR, de Camargo PB, Cardoso FL, da Costa ACL, Fitzjarrald DR, Goulden ML, Kruijt B, Maia JMF, Malhi YS, Manzi AO, Miller SD, Nobre AD, von Randow C, Sá LDA, Sakai RK, Tota J, Wofsy SC, Zanchi FB, Saleska SR (2013) What drives the seasonality of photosynthesis across the Amazon basin? A cross-site analysis of eddy flux tower measurements from the Brasil flux network. Agric for Meteorol 182–183:128–144. https://doi.org/10.1016/j.agrformet.2013.04.031

    Article  Google Scholar 

  • Rice AH, Pyle EH, Saleska SR, Hutyra L, Palace M, Keller M, De Camargo PB, Portilho K, Marques DF, Wofsy SC (2004) Carbon balance and vegetation dynamics in an old-growth Amazonian forest. Ecol Appl 14

  • Rijkers T, Pons TL, Bongers F (2000) The effect of tree height and light availability on photosyntheltic leaf traits of four neotropical species differing in shade tolerance. Funct Ecol 14:77–86

    Article  Google Scholar 

  • Rowland L, da Costa ACL, Galbraith DR, Oliveira RS, Binks OJ, Oliveira AAR, Pullen AM, Doughty CE, Metcalfe DB, Vasconcelos SS, Ferreira LV, Malhi Y, Grace J, Mencuccini M, Meir P (2015) Death from drought in tropical forests is triggered by hydraulics not carbon starvation. Nature 528(7580):119–122

    Article  CAS  PubMed  Google Scholar 

  • Santos VAHFD, Ferreira MJ, Rodrigues JVFC, Rodrigues JVFC, Garcia MN, Ceron JVB, Nelson BW, Saleska SR (2018). Causes of reduced leaf‐level photosynthesis during strong El Niño drought in a Central Amazon forest. Glob Change Biol 4266–4279

  • Saleska SR, Miller SD, Matross DM (2003) Carbon in Amazon forests: unexpected seasonal fluxes and disturbance-induced losses. Science 302:1554–1557

    Article  CAS  PubMed  Google Scholar 

  • Signori-Müller C, Oliveira RS, Barros FD, Tavares JV, Gilpin M, Diniz FC, Zevallos MJ, Yupayccana CA, Acosta M, Bacca J, Chino RS (2021) Non-structural carbohydrates mediate seasonal water stress across Amazon forests. Nat Commun 12(1):2310

    Article  PubMed  PubMed Central  Google Scholar 

  • Silvertown J, Araya Y, Gowing D (2015) Hydrological niches in terrestrial plant communities: a review. J Ecol 103:93–108

    Article  Google Scholar 

  • Smith MN, Stark SC, Taylor TC, Ferreira ML, de Oliveira E, Restrepo-Coupe N, Chen S, Woodcock T, dos Santos DB, Alves LF, Figueira M, de Camargo PB, de Oliveira RC, Aragão LEOC, Falk DA, McMahon SM, Huxman TE, Saleska SR (2019) Seasonal and drought-related changes in leaf area profiles depend on height and light environment in an Amazon forest. New Phytol 222:1284–1297

    Article  PubMed  Google Scholar 

  • Sperry JS, Donnelly JR, Tyree MT (1988) A method for measuring hydraulic conductivity and embolisms in xylem. Plant Cell Environ 11:35–40

    Article  Google Scholar 

  • Sperry JS, Hacke UG, Oren R, Comstock JP (2002) Water de cits and hydraulic limits to leaf water supply. Environment 251–263

  • Stark SC, Leitold V, Wu JL, Hunter MO, de Castilho CV, Costa FRC, Mcmahon SM, Parker GG, Shimabukuro MT, Lefsky MA, Keller M, Alves LF, Schietti J, Shimabukuro YE, Brando DO, Woodcock TK, Higuchi N, de Camargo PB, de Oliveira RC, Saleska SR (2012) Amazon forest carbon dynamics predicted by profiles of canopy leaf area and light environment. Ecol Lett 15:1406–1414

    Article  PubMed  Google Scholar 

  • Sterck F, Markesteijn L, Schieving F, Poorter L (2011) Functional traits determine trade-offs and niches in a tropical forest community. Proc Natl Acad Sci 108:20627–20632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sterck FJ, Duursma RA, Pearcy RW, Valladares F, Cieslak M, Weemstra M (2013) Plasticity influencing the light compensation point offsets the specialization for light niches across shrub species in a tropical forest understorey. J Ecol 101:971–980. https://doi.org/10.1111/1365-2745.12076

    Article  Google Scholar 

  • Sternberg LSL, Mulkey SS, Wright SJ (1989) Ecological interpretation of leaf carbon isotope ratios: influence of respired carbon dioxide. Ecology 70(5):1317–1324

    Article  Google Scholar 

  • Tang H, Dubayah R (2017) Light-driven growth in Amazon evergreen forests explained by seasonal variations of vertical canopy structure. Proc Natl Acad Sci 114(10):2640–2644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tavares JV, Oliveira RS, Mencuccini M, Signori-Müller C, Pereira L, Diniz FC, Gilpin M, Marca Zevallos MJ, Salas Yupayccana CA, Acosta M, Pérez Mullisaca FM, Barros FDV, Bittencourt P, Jancoski H, Scalon MC, Marimon BS, Oliveras Menor I, Marimon BH, Fancourt M, Chambers-Ostler A, Esquivel-Muelbert A, Rowland L, Meir P, Lola da Costa AC, Nina A, Sanchez JMB, Tintaya JS, Chino RSC, Baca J, Fernandes L, Cumapa ERM, Santos JAR, Teixeira R, Tello L, Ugarteche MTM, Cuellar GA, Martinez F, Araujo-Murakami A, Almeida E, da Cruz WJA, Del Aguila Pasquel J, Aragāo L, Baker TR, de Camargo PB, Brienen R, Castro W, Ribeiro SC, Coelho de Souza F, Cosio EG, Davila Cardozo N, da Costa Silva R, Disney M, Espejo JS, Feldpausch TR, Ferreira L, Giacomin L, Higuchi N, Hirota M, Honorio E, Huaraca Huasco W, Lewis S, Flores Llampazo G, Malhi Y, Monteagudo Mendoza A, Morandi P, Chama Moscoso V, Muscarella R, Penha D, Rocha MC, Rodrigues G, Ruschel AR, Salinas N, Schlickmann M, Silveira M, Talbot J, Vásquez R, Vedovato L, Vieira SA, Phillips OL, Gloor E, Galbraith DR (2023) Basin-wide variation in tree hydraulic safety margins predicts the carbon balance of Amazon forests. Nat 617(7959):111–117. https://doi.org/10.1038/s41586-023-05971-3

  • Thomas SC, Bazzaz FA (1999) Asymptotic height as a predictor of photosynthetic characteristics in Malaysian rain forest trees. Ecology 80:1607

    Article  Google Scholar 

  • Tomasella M, Beikircher B, Häberle KH, Hesse B, Kallenbach C, Matyssek R, Mayr S (2018) Acclimation of branch and leaf hydraulics in adult Fagus sylvatica and Picea abies in a forest through-fall exclusion experiment. Tree Physiol 38:198–211

    Article  PubMed  Google Scholar 

  • Vadeboncoeur MA, Jennings KA, Ouimette AP, Asbjornsen H (2020) Correcting tree-ring δ13C time series for tree-size effects in eight temperate tree species. Tree Physiol 40:333–349

    Article  CAS  PubMed  Google Scholar 

  • Weiner J (2004) Allocation, plasticity and allometry in plants. Perspect Plant Ecol Evol Syst 6:207–215

    Article  Google Scholar 

  • Westerband AC, Funk JL, Barton KE (2021) Intraspecific trait variation in plants: a renewed focus on its role in ecological processes. Ann bot 127(4):397–410

  • Wu J, Guan K, Hayek M, Restrepo-Coupe N, Wiedemann KT, Xu X, Wehr R, Christoffersen BO, Miao G, da Silva R, de Araujo AC, Oliveira RC, Camargo PB, Monson RK, Huete AR, Saleska SR (2016) Partitioning controls on Amazon forest photosynthesis between environmental and biotic factors at hourly to inter-annual time scales. Glob Change Biol. https://doi.org/10.1111/gcb.13509

    Article  Google Scholar 

  • Zhang YJ, Meinzer FC, Hao GY, Scholz FG, Bucci SJ, Takahashi FSC, Villalobos-Vega R, Giraldo JP, Cao KF, Hoffmann WA, Goldstein G (2009) Size-dependent mortality in a Neotropical savanna tree: the role of height-related adjustments in hydraulic architecture and carbon allocation. Plant Cell Environ 32:1456–1466

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to the LBA-INPA office in Santarém for management of the LBA flux tower site K67 in the Tapajos National Forest, specially  Louro Lima, to Sky Dominguez for logistical support; and to the parataxonomists Ednaldo Augusto Pinheiro Nascimento and Miguel Pastana do Nascimento. We also thank Dr. Marcos Longo for providing the height-diameter model. We thanks to Laboratory at LBA-ECO flux tower, Laboratory of the “Biofísica da Região Amazônica e Modelagem Ambiental”—BRAMA, and in the “Laboratório de Tecnologia da Madeira”—LTM, both in University of Western Pará (UFOPA—“Universidade Federal do Oeste do Pará), for let us use their logistics to process our samples.

Funding

This study was financed by the U.S. National Science Foundation (NSF) award DEB-1754803 and DEB-1949894. S.C.S. was supported by NSF award DEB-1754357, synergistic DEB-1950080, and the USDA NIFA. Luciana F. Alves was supported by NSF award DEB 1753973, Deliane Penha was supported by Serrapilheira Institute award 1709-18983. RSO and GST acknowledges CNPq for a productivity scholarship.

Author information

Authors and Affiliations

Authors

Contributions

MB and formulated the main idea. LFA, RCOJ, and SRXJ helped with floristic, vegetation data, and species identification. MB, VHM, KC, DP, GST, and NP helped with data collection and laboratory analysis. NRC, SRS, and PBC helped with the stable isotope interpretation. PBC processed the stable isotope samples. RCOJ, VHM, JMSM, and RS helped with logistics and laboratory support in Santarém. SRS participated in research coordination and funds management. All authors contributed substantially to writing the manuscript.

Corresponding author

Correspondence to Mauro Brum.

Ethics declarations

Competing interests

The authors declare no competing interests.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Daniel Potts.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 196 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brum, M., Alves, L.F., de Oliveira-Junior, R.C. et al. Tree hydrological niche acclimation through ontogeny in a seasonal Amazon forest. Plant Ecol 224, 1059–1073 (2023). https://doi.org/10.1007/s11258-023-01361-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11258-023-01361-x

Keywords

Navigation