Skip to main content

Advertisement

Log in

True water constraint under a rainfall interception experiment in a Mediterranean shrubland (Northern Tunisia): confronting discrete measurements with a plant–soil water budget model

  • Published:
Plant Ecology Aims and scope Submit manuscript

Abstract

Increased drought length and intensity is expected in the Mediterranean basin under anthropogenic increase in atmospheric CO2, leading to extreme events not yet encountered in the present climate variability. Understanding ecosystems responses and capturing peculiar ecophysiological processes related to these events have been investigated in the field by rainfall manipulation experiments. Quantifying the actual drought faced by the ecosystem under control and dry plots, or among experiments remain a key challenge for explaining functional impacts on plant growth. Full-profile soil water content can be tricky to assess in rocky soils, and time-consuming plant water potential measurements remain a discrete information unable to capture short rainfall pulses. We propose here to fully investigate the water budget of a total rainfall interception manipulation on a Mediterranean shrubland, coupled with a plant–soil water balance model. We could accurately simulate the seasonal course of plant water status, including small rainfall pulses. We then derived yearly estimates of water stress integral for each water treatment, leading to an estimate of 66–86 % increase of drought intensity for the dry treatment compared to the control. Comparing actual and expected plant water budget from simulations in the dry plots allowed to identify and quantify the impact of methodological issues related to rainfall interception experiments as side effects for intrusive rain drops and subsurface lateral water flow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ackerly D (2004) Functional strategies of chaparral shrubs in relation to seasonal water deficit and disturbance. Ecol Monogr 74:25–44

    Article  Google Scholar 

  • Allen RG, Pereira LS, Raes D, Smith M (1998) Crop evapotranspiration: guidelines for computing crop requirements. Irrigation and Drainage Paper No. 56, FAO, Rome, Italy, 300 p

  • Améglio T, Archer P, Cohen M, Valancogne C, Daudet FA, Dayau S, Cruiziat P (1999) Significance and limits in the use of predawn leaf water potential for tree irrigation. Plant Soil 207:155–167

    Article  Google Scholar 

  • Asner G, Scurlock JMO, Hicke JA (2003) Global synthesis of leaf area index observations: implications for ecological and remote sensing studies. Glob Ecol Biogeogr 12:191–205

    Article  Google Scholar 

  • Beier C, Beierkuhnlein C, Wohlgemuth T, Penuelas J, Emmett B, Kömer C, de Boeck H, Christensen JH, Leuzinger S, Janssens IA, Hansen K (2012) Precipitation manipulation experiments–challenges and recommendations for the future. Ecol Lett 15:899–911. doi:10.1111/j.1461-0248.2012.01793.x

    Article  PubMed  Google Scholar 

  • Belk EL, Markewitz D, Rasmussen TC, Carvalho EJM, Nepstad DC, Davidson EA (2007) Modeling the effects of throughfall reduction on soil water content in a Brazilian Oxisol under a moist tropical forest. Water Resour Res. doi:10.1029/2006WR005493

  • Burgess SSO (2006) Measuring transpiration responses to summer precipitation in a Mediterranean climate: a simple screening tool for identifying plant water-use strategies. Physiol Plant 127:404–412. doi:10.1111/j.1399-3054.2006.00669.x

    Article  CAS  Google Scholar 

  • Canadell J, Zedler PH (1995) Underground structures of woody plants in Mediterranean ecosystems of Australia, California, and Chile. In: Arroyo MTK, Zdler PH, Fox MD (eds) Ecology and biogeography of mediterranean ecosystems in Chile, California and Australia. Springer, New York, pp 177–210

    Chapter  Google Scholar 

  • Canadell J, Jackson RB, Ehleringer JR, Mooney HA, Sala OE, Schulze E-D (1996) Maximum root depth of vegetation types at the global scale. Oecologia 108:59–583

    Article  Google Scholar 

  • Chakroun H, Mouillot F, Nasr Z, Nouri M, Ennajah A, Ourcival JM (2014) Performance of LAI-MODIS and the influence on drought simulation in a Mediterranean forest. Ecohydrology (in press). doi:10.1002/eco.1426

  • Christensen JH, Hewitson B, Busuioc A, Chen A, Gao X, Held I, Jones R, Kolli RK, Kwon W-T, Laprise R, Magaña Rueda V, Mearns L, Menéndez CG, Räisänen J, Rinke A, Sarr A, Whetton P (2007) Regional climate projections. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate Change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  • Dai A (2011) Drought under global warming: a review. Wiley Interdiscip Rev Clim Chang. doi:10.1002/wcc.81

  • Donovan L, Richards J, Linton M (2003) Magnitude and mechanisms of disequilibrium between predawn plant and soil water potentials. Ecology 84:463–470

    Article  Google Scholar 

  • Fernández JE, Palomo MJ, Díaz-Espejo A, Giròn IF (2003) Influence of partial soil wetting on water relation parameters of the olive tree. Agronomie 23:545–552. doi:10.1051/agro

    Article  Google Scholar 

  • Galmés J, Flexas J, Savé R, Medrano H (2006) Water relations and stomatal characteristics of Mediterranean plants with different growth forms and leaf habits: responses to water stress and recovery. Plant Soil 290:139–155. doi:10.1007/s11104-006-9148-6

    Article  Google Scholar 

  • Ghrab M, Gargouri K, Bentaher H, Chartzoulakis K, Ayadi M, Ben Mimoun M, Masmoudi MM, Ben Mechlia N, Psarras G (2013) Water relations and yield of olive tree (cv. Chemlali) in response to partial root-zone drying (PRD) irrigation technique and salinity under arid climate. Agric Water Manag 123:1–11. doi:10.1016/j.agwat.2013.03.007

    Article  Google Scholar 

  • Gibelin AL, Deque L (2003) Anthropogenic climate change over the Mediterranean region simulated by a global variable resolution model. Clim Dyn 20(4):327–339

  • Giorgi F, Lionello P (2008) Climate change projections for the Mediterranean region. Glob Planet Change 63:90–104. doi:10.1016/j.gloplacha.2007.09.005

    Article  Google Scholar 

  • Granier A, Reichstein M, Bréda N et al (2007) Evidence for soil water control on carbon and water dynamics in European forests during the extremely dry year: 2003. Agric For Meteorol 143:123–145. doi:10.1016/j.agrformet.2006.12.004

    Article  Google Scholar 

  • Gratani L, Varone L (2004) Leaf key traits of Erica arborea L., Erica multiflora L. and Rosmarinus officinalis L. co-occurring in the Mediterranean maquis. Flora Morphol Distrib Funct Ecol Plants 199:58–69. doi:10.1078/0367-2530-00130

  • Huxman TE, Snyder K, Tissue D, Leffler AJ, Ogle K, Pockman WT, Sandquist DR, Schwinning S (2004) Precipitation pulses and carbon fluxes in semiarid and arid ecosystems. Oecologia 141:254–268. doi:10.1007/s00442-004-1682-4

    PubMed  Google Scholar 

  • Jentsch A, Kreyling J, Beierkuhnlein C (2007) A new generation of climate-change experiments: events, not trends. Front Ecol Environ 5:365–374

    Article  Google Scholar 

  • Joffre R, Rambal S, Damesin C (1999) Functional attributes in Mediterranean-type ecosystems. In: Pugnaire FI, Valladares F (eds) Handbook of functional plant ecology. Marcel Dekker Inc., New York, pp 347–380

    Google Scholar 

  • Keyantash J, Dracup JA (2002) The quantification of drought: an evaluation of drought indices. Am Meteorol Soc Bull 83:1167–1180

    Google Scholar 

  • Koutsias N, Xanthopoulos G, Founda D, Xystrakis F, Nioti F, Pleniou M, Mallinis G, Arianoutsou M (2013) On the relationship between forest fires and weather conditions in Greece from long-term national observations (1894–2010). Int J Wild Fire. doi:10.1071/WF12003

  • Lavorel S, Canadell J, Rambal S, Terradas J (1998) Mediterranean terrestrial ecosystems: research priorities on global change effects. Glob Ecol Biogeogr Lett 7:157–166

    Article  Google Scholar 

  • Lhomme JP, Rocheteau A, Ourcival JM, Rambal S (2001) Non-steady-state modelling of water transfer in a Mediterranean evergreen canopy. Agric For Meteorol 108:67–83. doi:10.1016/S0168-1923(01)00218-0

    Article  Google Scholar 

  • Limousin JM, Rambal S, Ourcival JM, Rocheteau A, Joffre R, Cortina RR (2009) Long-term transpiration change with rainfall decline in a Mediterranean Quercus ilex forest. Glob Chang Biol 15:2163–2175. doi:10.1111/j.1365-2486.2009.01852.x

    Article  Google Scholar 

  • Loik ME (2006) Sensitivity of water relations and photosynthesis to summer precipitation pulses for Artemisia tridentata and Purshia tridentata. Plant Ecol 191:95–108. doi:10.1007/s11258-006-9217-1

    Article  Google Scholar 

  • Misson L, Degueldre D, Collin C, Rodriguez R, Rocheteau A, Ourcival JM, Rambal S (2011) Phenological responses to extreme droughts in a Mediterranean forest. Glob Chang Biol 17:1036–1048. doi:10.1111/j.1365-2486.2010.02348.x

    Article  Google Scholar 

  • Monteith J (1965) Evaporation and environment. Symp Soc Exp Biol 19:205–224

    CAS  PubMed  Google Scholar 

  • Montserrat-Marti G, Camarero JJ, Palacio S, Perez-Rontome C, Milla R, Albuixech J, Maestro M (2009) Summer drought constrains the phenology and the growth of two co-existing Mediterranean oaks with contrasting leaf habits: implications for their persistence and reproduction. Trees 23(4):787–799

    Article  Google Scholar 

  • Mouillot F, Rambal S, Lavorel S (2001) A generic process-based SImulator for meditERRanean landscApes (SIERRA): design and validation exercises. For Ecol Manage 147:75–97. doi:10.1016/S0378-1127(00)00432-1

    Google Scholar 

  • Muller C (1999) Modelling soil–biosphere interactions. CABI, Cambridge, UK, 354 p

  • Myers B (1988) Water stress integral—a link between short-term stress and long-term growth. Tree Physiol 4:315–323

    Article  PubMed  Google Scholar 

  • Nardini A, Lo Gullo MA, Trifilo P, Salleo S (2014) The challenge of the Mediterranean climate to plant hydraulics: responses and adapations. Env Exp Bot 103:68–79

    Article  Google Scholar 

  • Nepstad DC, Tohver IM, Ray D, Moutinho P, Cardinot G (2007) Mortality of large trees and lianas following experimental drought in an Amazon forest. Ecology 88:2259–2269

    Article  PubMed  Google Scholar 

  • Ogle K, Reynolds JF (2004) Plant responses to precipitation in desert ecosystems: integrating functional types, pulses, thresholds, and delays. Oecologia 141:282–294. doi:10.1007/s00442-004-1507-5

    Article  PubMed  Google Scholar 

  • Parra A, Ramírez DA, Resco V, Velasco A, Moreno JM (2012) Modifying rainfall patterns in a Mediterranean shrubland: system design, plant responses, and experimental burning. Int J Biometeorol 56:1033–1043. doi:10.1007/s00484-011-0517-3

    Article  PubMed  Google Scholar 

  • Penman HL (1948) Natural evaporation from open water, bare soil and grass. Proc R Soc Lond Ser A Math Phys 193:120–145

    Article  CAS  Google Scholar 

  • Prieto P, Peñuelas J, Llusià J, Asensio D, Estiarte M (2009) Effects of experimental warming and drought on biomass accumulation in a Mediterranean shrubland. Plant Ecol 205:179–191. doi:10.1007/s11258-009-9608-1

    Article  Google Scholar 

  • Quero JL, Sterck FJ, Martínez-Vilalta J, Villar R (2011) Water-use strategies of six co-existing Mediterranean woody species during a summer drought. Oecologia 166:45–57. doi:10.1007/s00442-011-1922-3

    Article  PubMed  Google Scholar 

  • Ramírez D, Parra A, Dios V, de Moreno JM (2012) Differences in morpho-physiological leaf traits reflect the response of growth to drought in a seeder but not in a resprouter Mediterranean species. Funct Plant Biol 39:332–341

    Article  Google Scholar 

  • Ruffault J, Martin-StPaul NK, Rambal S, Mouillot F (2013) Differential regional responses in drought length, intensity and timing to recent climate changes in a Mediterranean forested ecosystem. Clim Change 117:103–117. doi:10.1007/s10584-012-0559-5

  • Ruffault J, Martin-StPaul NK, Duffet C, Goge F, Mouillot F (2014) Projecting future drought in Mediterranean forests: bias correction of climate models matters! Theor Appl Climatol (in press). doi:10.1007/s00704-013-0992-z

  • Sala OE, Lauenroth WK (1982) Small rainfall events: an ecological role in semiarid regions. Oecologia 53:301–304

    Article  Google Scholar 

  • Schwinning S, Ehleringer JR (2001) Water use trade-offs and optimal adaptations to pulse-driven arid ecosystems. J Ecol 89:464–480. doi:10.1046/j.1365-2745.2001.00576.x

    Article  Google Scholar 

  • Schwinning S, Sala OE (2004) Hierarchy of responses to resource pulses in arid and semi-arid ecosystems. Oecologia 141:211–220. doi:10.1007/s00442-004-1520-8

    PubMed  Google Scholar 

  • Sheffield J, Wood EF (2008) Projected changes in drought occurrence under future global warming from multi-model, multi-scenario, IPCC AR4 simulations. Clim Dyn 31:79–105. doi:10.1007/s00382-007-0340-z

    Article  Google Scholar 

  • Shuttleworth WJ (2007) W. James Shuttleworth. Hydrol Earth Syst Sci 11:210–244

    Article  Google Scholar 

  • Tardieu F, Simonneau T (1998) Variability among species of stomatal control under fluctuating soil water status and evaporative demand: modelling isohydric and anisohydric behaviours. J Exp Bot 49:419–432

    Article  Google Scholar 

  • Throop HL, Reichmann LG, Sala OE, Archer SR (2012) Response of dominant grass and shrub species to water manipulation: an ecophysiological basis for shrub invasion in a Chihuahuan Desert grassland. Oecologia 169:373–383. doi:10.1007/s00442-011-2217-4

    Article  PubMed  Google Scholar 

  • Van Genuchten MT (1980) A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci Soc Am J 44:892

    Article  Google Scholar 

  • Vicca S, Gilgen AK, Camino Serrano M et al (2012) Urgent need for a common metric to make precipitation manipulation experiments comparable. New Phytol 195:518–522. doi:10.1111/j.1469-8137.2012.04224.x

    Article  CAS  PubMed  Google Scholar 

  • Vicente-Serrano SM, Gouveia C, Camarero JJ et al (2013) Response of vegetation to drought time-scales across global land biomes. Proc Natl Acad Sci USA 110:52–57. doi:10.1073/pnas.1207068110

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • West AG, Dawson TE, February EC, Midgley GF, Bond WJ, Aston TL (2012) Diverse functional responses to drought in a Mediterranean-type shrubland in South Africa. New Phytol 195:396–407. doi:10.1111/j.1469-8137.2012.04170.x

    Article  CAS  PubMed  Google Scholar 

  • Wu Z, Dijkstra P, Koch GW, Penuelas J, Hungate BA (2011) Responses of terrestrial ecosystems to temperature and precipitation change: a meta-analysis of experimental manipulation. Glob Chang Biol 17:927–942. doi:10.1111/j.1365-2486.2010.02302.x

    Article  Google Scholar 

  • Wullschleger SD, Hanson PJ (2006) Sensitivity of canopy transpiration to altered precipitation in an upland oak forest: evidence from a long-term field manipulation study. Glob Chang Biol 12:97–109. doi:10.1111/j.1365-2486.2005.01082.x

    Article  Google Scholar 

  • Yaseef NR, Yakir D, Rotenberg E, Chiller G, Cohen S (2009) Ecohydrology of a semi-arid forest: partitioning among water balance components and its implications for predicted precipitation changes. Ecohydrology. doi:10.1002/eco

  • Zweifel R, Zimmermann L, Newbery DM (2005) Modeling tree water deficit from microclimate: an approach to quantifying drought stress. Tree Physiol 25:147–156

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was funded by EU FP7 program FUME “Forest Fires under Climate, Social and Economic changes in Europe, the Mediterranean and other fire-affected areas of the world” contract Grant No. 243888. We thank J. M. Moreno for constructive discussions about the experimental design, and the Tunisian forest services (Mr S. Belhadj Salah, Direction Générale des Forêts, Tunis, Tunisia) for authorizations to install the experiment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Damien Longepierre.

Additional information

Communicated by: Thomas Abeli, Anne Jäkäläniemi and Rodolfo Gentili

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Longepierre, D., Mouillot, F., Ouelhazi, B. et al. True water constraint under a rainfall interception experiment in a Mediterranean shrubland (Northern Tunisia): confronting discrete measurements with a plant–soil water budget model. Plant Ecol 215, 779–794 (2014). https://doi.org/10.1007/s11258-014-0349-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11258-014-0349-4

Keywords

Navigation