Skip to main content
Log in

Effects of water level and temperature on performance of four Sphagnum mosses

  • Original Paper
  • Published:
Plant Ecology Aims and scope Submit manuscript

Abstract

To evaluate the effects of changes in water level and temperatures on performance of four Sphagnum mosses, S. magellanicum, S. rubellum, S. imbricatum and S. fuscum were grown at two water levels,  −5 cm and  −15 cm, and at two temperatures, 15°C and 20°C. These species differ in their position along the microtopographical gradient and in their geographical distribution. Height increment, subcapitulum bulk density, biomass production, capitulum water content and cumulative evaporation were measured. Height increment and biomass production of S. magellanicum was lower at low water table than at high water table, whereas height increment and biomass production of S. rubellum, S. imbricatum and S. fuscum were unaffected. Height increment of S. magellanicum, S. rubellum and S. imbricatum was higher at high temperature than at low temperature. Biomass production of only S. magellanicum and S. rubellum was higher at high temperature than at low temperature, corresponding with their more southern distribution. Cumulative evaporation of S. magellanicum and S. rubellum was lower at low water table and could be explained by hampered water transport towards the capitula. We conclude that changes in water table and temperature may alter the Sphagnum composition on raised bogs, which may result in changes to important ecosystem processes. Therefore, it is important that species composition and changes therein are taken into account when evaluating global change effects on raised bog ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andrus RE, Wagner DJ, Titus JE (1983) Vertical zonation of Sphagnum mosses along hummock-hollow gradients. Can J Bot 61:3128–3139

    Google Scholar 

  • Asada T, Warner BG, Banner A (2003) Growth of mosses in relation to climate factors in a hypermaritime coastal peatlands in British Columbia, Canada. Bryologist 106(4):516–527

    Article  Google Scholar 

  • Bergman I, Lundberg P, Nilsson M (1999) Microbial carbon mineralisation in an acid surface peat: effects of environmental factors in laboratory incubations. Soil Biol Biochem 31:1867–1877

    Article  CAS  Google Scholar 

  • Bragazza L, Tahvanainen T, Kutnar L, Rydin H, Limpens J, Hajek M, Grosvernier P, Hajek T, Hajkova P, Hansen I, Iacumin P, Gerdol R (2004) Nutritional constraints in ombrotrophic Sphagnum plants under increasing atmospheric nitrogen deposition in Europe. New Phytol 163(3):609–616. DOI 10.1111/j.1469–8137.2004.01154.x

    Google Scholar 

  • Clymo RS, Hayward PM (1982) The Ecology of Sphagnum. In: Smith AJE (ed) Bryophyte ecology. Chapman and Hall, London

    Google Scholar 

  • Clymo RS, Turunen J, Tolonen K (1998) Carbon accumulation in peatland. Oikos 81:368–388

    Article  Google Scholar 

  • Cross JR (1990) The Raised Bogs of Ireland: their ecology, status and conservation. Report to the minister of state at the department of the environment. The Stationary Office, Dublin

    Google Scholar 

  • Daniels RE, Eddy A (1990) Handbook of European Sphagna. HMSO, London

    Google Scholar 

  • Dorrepaal E, Aerts R, Cornelissen JHC, Callaghan TV, van Logtestijn RSP (2003). Summer warming and increased winter snow cover affect Sphagnum fuscum growth, structure and production in a sub-arctic bog. Global Change Biol 10(1): 93–104. DOI 10.1111/j.1365–2486.2003.00718.x

    Google Scholar 

  • Duckett JG, Clymo RS (1988). Regeneration of bog liverworts. New Phytol 110(1):119–127

    Article  Google Scholar 

  • Garrels RM, Christ CL (1965) Solutions, minerals and equilibria. Harper and Row, New York, USA

    Google Scholar 

  • Gerdol R (1995) The growth dynamics of Sphagnum based on field measurements in a temperate bog and on laboratory cultures. J Ecol 83(3):431–437

    Article  Google Scholar 

  • Gerdol R (1996) The seasonal growth pattern of Sphagnum magellanicumBrid. in different microhabitats on a mire in the southern Alps (Italy). Oecologia Montana 5:13–20

    Google Scholar 

  • Gerdol R, Bonara A, Marchesini R, Gualandri R, Pancaldi S (1998) Growth response of Sphagnum capillifolium to nighttime temperature and nutrient level: mechanisms and implications for global change. Arct Alp Res 30(4):388–395

    Article  Google Scholar 

  • Gorham E (1991) Northern Peatlands: role in the carbon cycle and probable responses to climatic warming. Ecol Appl 1(2):182–195

    Article  Google Scholar 

  • Grosvernier P, Matthey Y, Buttler A (1997) Growth potential of three Sphagnum species in relation to water table level and peat properties with implications for their restoration in cut-over bogs. J Appl Ecol 34:471–483

    Article  Google Scholar 

  • Gunnarsson U (2005) Global patterns of Sphagnum productivity. J Bryol 27:269–279. DOI 10.1179/174328205X70029

    Google Scholar 

  • Gunnarsson U, Granberg G, Nilsson M (2004) Growth, production and interspecific competition in Sphagnum: effects of temperature, nitrogen and sulphur treatments on a boreal mire. New Phytol 163(2):349–359. DOI 10.1111/j.1469–8137.2004.01108.x

    Google Scholar 

  • Hayward PM, Clymo RS (1982). Profiles of water content and pore size in Sphagnum peat, and their relation to peat bog ecology. Proc R Soc Lond [Biol] 215:299–325

    Article  Google Scholar 

  • Heath D (1995) An introduction to experimental design and statistics for biology. UCL Press Limited, London

    Google Scholar 

  • Heijmans MMPD, Klees H, Berendse F (2002) Competition between Sphagnum magellanicum and Eriophorum angustifolium as affected by raised CO2 and increased N deposition. Oikos 97(3):415–425

    Article  CAS  Google Scholar 

  • Hilbert DW, Roulet N, Moore T (2000). Modelling and analysis of peatlands as dynamical systems. J Ecol 88(2):230–242

    Article  Google Scholar 

  • IPCC (1996) Climate Change 1995: the science of climate change. Cambridge University Press, Cambridge

    Google Scholar 

  • Kelly L, Schouten MGC (2002) Vegetation. In: Schouten MGC (ed) Conservation and restoration of raised bogs: geological, hydrological and ecological studies. Dúchas—The Heritage Service of the Department of the Environment and Local Government, Ireland; Staatsbosbeheer, the Netherlands, Geological Survey of Ireland, Dublin

  • Limpens J, Berendse F (2003a) How litter quality affects mass loss and N loss from decomposing Sphagnum. Oikos 103:537–547

    Article  CAS  Google Scholar 

  • Limpens J, Berendse F (2003b) Growth reduction of Sphagnum magellanicum subjected to high nitrogen deposition: the role of amino acid nitrogen concentration. Oecologia 135:339–345. DOI 10.1007/s00442-003-1224-5

    Google Scholar 

  • Limpens J, Tomassen HBM, Berendse F (2003) Expansion of Sphagnum fallax in bogs: striking the balance between N and P availability. J Bryol 25:83–90. DOI 10.1179/03736680235001733

    Google Scholar 

  • Lindholm T (1990) Growth dynamics of the peat moss Sphagnum fuscum on hummocks on a raised bog in southern Finland. Ann Bot Fenn 27(1):67–78

    Google Scholar 

  • Moore PD (2002) The future of cool temperate bogs. Environ Conserv 29(1):3–20

    Article  CAS  Google Scholar 

  • Parkes HM, Mitchell FJG (2000) Vegetation history at Clonmacnoise, Co. Offaly. Biol Environ Proc R Irish Acad 100B(1):35–40

    Google Scholar 

  • Rustad LE, Campbell JL, Marion GM, Norby RJ, Mitchell MJ, Hartley AE, Cornelissen JHC, Gurevitch J and GCTE-NEWS (2001) A meta-analysis of the response of soil respiration, net nitrogen mineralization, and aboveground plant growth to experimental ecosystem warming. Oecologia 126(4):543–562. DOI 10.1007/s004420000544

    Google Scholar 

  • Rydin H, McDonald AJS (1985a) Tolerance of Sphagnum to water level. J Bryol 13:571–578

    Google Scholar 

  • Rydin H, McDonald AJS (1985b) Photosynthesis in Sphagnum at different water contents. J Bryol 13:579–584

    Google Scholar 

  • Rydin H, Sjörs H, Löfroth M (2003) Mires Acta Phytogeogr Suec 84:91–112

    Google Scholar 

  • Schouten MGC (ed) (2002) Conservation and restoration of raised bogs: geological, hydrological and ecological studies. Dúchas— The Heritage Service of the Department of the Environment and Local Government, Ireland; Staatsbosbeheer, the Netherlands, Geological Survey of Ireland, Dublin

  • Sonesson M, Carlsson BA, Callaghan TV, Halling S, Björn LO, Bertgren M, Johanson U (2002) Growth of two peat-forming mosses in subarctic mires: species interactions and effects of simulated climate change. Oikos 99(1):151–160

    Article  Google Scholar 

  • Titus JE, Wagner DJ (1984) Carbon balance for two Sphagnum mosses: water balance resolves a physiological paradox. Ecology 65(6):1765–1774

    Article  CAS  Google Scholar 

  • Van der Schaaf S (2002) Bog hydrology. In: Schouten MGC (ed) Conservation and restoration of raised bogs: geological, hydrological and ecological studies. Dúchas—The Heritage Service of the Department of the Environment and Local Government, Ireland; Staatsbosbeheer, the Netherlands; Geological Survey of Ireland, Dublin

  • Wallén B, Falkengren-Gerup U, Malmer N (1988). Biomass, productivity and relative rate of photosynthesis of Sphagnum at different water levels on a South Swedish peat bog. Holarctic Ecol 11:70–75

    Google Scholar 

  • Weltzin JF, Harth C, Bridgham SD, Pastor J, Vonderharr M (2001) Production and microtopography of bog bryophytes: response to warming and water-table manipulations. Oecologia 128(4):557–565

    Article  Google Scholar 

Download references

Acknowledgements

We thank R.H.A. van Grunsven, M.M.P.D Heijmans, F. Kohler, J. Noordijk, J. Verhulst and two anonymous reviewers for their critical comments on earlier versions of the manuscript, which led to significant improvements. We are indebted to An Taisce and the National Parks and Wildlife Service, Department of the Environment, Heritage and Local Government, Ireland for permission to enter their nature reserves and to collect the peat samples. We also acknowledge the practical help of P.H. Crushell (University College Cork), J.M. Gleichman, F. Möller and J.D. van Walsem. This research was supported by the National Forest Service of The Netherlands (Staatsbosbeheer) and a grant from the Dutch Foundation for Conservation of Irish bogs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bjorn J.M. Robroek.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Robroek, B.J., Limpens, J., Breeuwer, A. et al. Effects of water level and temperature on performance of four Sphagnum mosses. Plant Ecol 190, 97–107 (2007). https://doi.org/10.1007/s11258-006-9193-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11258-006-9193-5

Keywords

Navigation