Skip to main content

Advertisement

Log in

Exploring the characteristics of gut microbiome in patients of Southern Fujian with hypocitraturia urolithiasis and constructing clinical diagnostic models

  • Urology - Original Paper
  • Published:
International Urology and Nephrology Aims and scope Submit manuscript

Abstract

Purpose

Hypocitraturia is an important cause of urolithiasis. Exploring the characteristics of the gut microbiome (GMB) of hypocitriuria urolithiasis (HCU) patients can provide new ideas for the treatment and prevention of urolithiasis.

Methods

The 24 h urinary citric acid excretion of 19 urolithiasis patients was measured, and patients were divided into the HCU group and the normal citrate urolithiasis (NCU) group. The 16 s ribosomal RNA (rRNA) was used to detect GMB composition differences and construct operational taxonomic units (OTUs) coexistence networks. The key bacterial community was determined by Lefse analysis, Metastats analysis and RandomForest analysis. Redundancy analysis (RDA) and Pearson correlation analysis visualized the correlation between key OTUs and clinical features and then established the disease diagnosis model of microbial-clinical indicators. Finally, PICRUSt2 was used to explore the metabolic pathway of related GMB in HCU patients.

Results

The alpha diversity of GMB in HCU group was increased and Beta diversity analysis suggested significant differences between HCU and NCU groups, which was related to renal function damage and urinary tract infection. Ruminococcaceae_ge and Turicibacter are the characteristic bacterial groups of HCU. Correlation analysis showed that the characteristic bacterial groups were significantly associated with various clinical features. Based on this, the diagnostic models of microbiome-clinical indicators in HCU patients were constructed with the areas under the curve (AUC) of 0.923 and 0.897, respectively. Genetic and metabolic processes of HCU are affected by changes in GMB abundance.

Conclusion

GMB disorder may be involved in the occurrence and clinical characteristics of HCU by influencing genetic and metabolic pathways. The new microbiome-clinical indicator diagnostic model is effective.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Zuckerman JM, Assimos DG (2009) Hypocitraturia: pathophysiology and medical management. Rev Urol 11(3):134–144

    PubMed  PubMed Central  Google Scholar 

  2. Sakhaee K et al (2011) Nephrolithiasis-associated bone disease: pathogenesis and treatment options. Kidney Int 79(4):393–403

    Article  CAS  PubMed  Google Scholar 

  3. Arrabal-Polo MA et al (2013) Importance of citrate and the calcium : citrate ratio in patients with calcium renal lithiasis and severe lithogenesis. BJU Int 111(4):622–627

    Article  CAS  PubMed  Google Scholar 

  4. Lan Y et al (2021) Glycine suppresses kidney calcium oxalate crystal depositions via regulating urinary excretions of oxalate and citrate. J Cell Physiol 236(10):6824–6835

    Article  CAS  PubMed  Google Scholar 

  5. Osis G et al (2019) Regulation of renal NaDC1 expression and citrate excretion by NBCe1-A. Am J Physiol Renal Physiol 317(2):F489–F501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Siener R et al (2013) The role of Oxalobacter formigenes colonization in calcium oxalate stone disease. Kidney Int 83(6):1144–1149

    Article  CAS  PubMed  Google Scholar 

  7. Ormanji MS, Rodrigues FG, Heilberg IP (2020) Dietary recommendations for bariatric patients to prevent kidney stone formation. Nutrients 12(5):1442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Pak CY et al (1985) Long-term treatment of calcium nephrolithiasis with potassium citrate. J Urol 134(1):11–19

    Article  CAS  PubMed  Google Scholar 

  9. Tian L et al (2022) Lactiplantibacillus plantarum J-15 reduced calcium oxalate kidney stones by regulating intestinal microbiota, metabolism, and inflammation in rats. FASEB J 36(6):e22340

    Article  CAS  PubMed  Google Scholar 

  10. Piper HG et al (2017) Severe gut microbiota dysbiosis is associated with poor growth in patients with short bowel syndrome. JPEN J Parenter Enteral Nutr 41(7):1202–1212

    Article  PubMed  Google Scholar 

  11. Mortera P et al (2013) Ca2+-citrate uptake and metabolism in Lactobacillus casei ATCC 334. Appl Environ Microbiol 79(15):4603–4612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Martino GP et al (2016) Aroma compounds generation in citrate metabolism of Enterococcus faecium: genetic characterization of type I citrate gene cluster. Int J Food Microbiol 218:27–37

    Article  CAS  PubMed  Google Scholar 

  13. Miller AW et al (2019) Inhibition of urinary stone disease by a multi-species bacterial network ensures healthy oxalate homeostasis. Kidney Int 96(1):180–188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Rognes T et al (2016) VSEARCH: a versatile open source tool for metagenomics. PeerJ 4:e2584

    Article  PubMed  PubMed Central  Google Scholar 

  15. Chen S et al (2018) fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34(17):i884–i890

    Article  PubMed  PubMed Central  Google Scholar 

  16. Edgar RC (2013) UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods 10(10):996–998

    Article  CAS  PubMed  Google Scholar 

  17. Hagerty SL et al (2020) An empirically derived method for measuring human gut microbiome alpha diversity: demonstrated utility in predicting health-related outcomes among a human clinical sample. PLoS One 15(3):e0229204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Mori AS, Isbell F, Seidl R (2018) β-diversity, community assembly, and ecosystem functioning. Trends Ecol Evol 33(7):549–564

    Article  PubMed  PubMed Central  Google Scholar 

  19. White JR, Nagarajan N, Pop M (2009) Statistical methods for detecting differentially abundant features in clinical metagenomic samples. PLoS Comput Biol 5(4):e1000352

    Article  PubMed  PubMed Central  Google Scholar 

  20. Segata N et al (2011) Metagenomic biomarker discovery and explanation. Genome Biol 12(6):R60

    Article  PubMed  PubMed Central  Google Scholar 

  21. Capblancq T et al (2018) Evaluation of redundancy analysis to identify signatures of local adaptation. Mol Ecol Resour 18(6):1223–1233

    Article  CAS  PubMed  Google Scholar 

  22. Speiser JL et al (2019) A comparison of random forest variable selection methods for classification prediction modeling. Expert Syst Appl 134:93–101

    Article  PubMed  PubMed Central  Google Scholar 

  23. Douglas GM, Beiko RG, Langille M (2018) Predicting the functional potential of the microbiome from marker genes using PICRUSt. Methods Mol Biol 1849:169–177

    Article  CAS  PubMed  Google Scholar 

  24. Parks DH et al (2014) STAMP: statistical analysis of taxonomic and functional profiles. Bioinformatics 30(21):3123–3124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wang LL et al (2020) A novel approach for the forensic diagnosis of drowning by microbiological analysis with next-generation sequencing and unweighted UniFrac-based PCoA. Int J Legal Med 134(6):2149–2159

    Article  PubMed  Google Scholar 

  26. Pérez-Enciso M, Tenenhaus M (2003) Prediction of clinical outcome with microarray data: a partial least squares discriminant analysis (PLS-DA) approach. Hum Genet 112(5–6):581–592

    PubMed  Google Scholar 

  27. Sanapareddy N et al (2012) Increased rectal microbial richness is associated with the presence of colorectal adenomas in humans. ISME J 6(10):1858–1868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Xu Z et al (2020) Gut microbiome reveals specific dysbiosis in primary osteoporosis. Front Cell Infect Microbiol 10:160

    Article  PubMed  PubMed Central  Google Scholar 

  29. Hong SY et al (2023) The role of microbiome: a novel insight into urolithiasis. Crit Rev Microbiol 49(2):177–196

    Article  CAS  PubMed  Google Scholar 

  30. Robijn S et al (2011) Hyperoxaluria: a gut-kidney axis. Kidney Int 80(11):1146–1158

    Article  CAS  PubMed  Google Scholar 

  31. Ticinesi A, Nouvenne A, Meschi T (2019) Gut microbiome and kidney stone disease: not just an Oxalobacter story. Kidney Int 96(1):25–27

    Article  CAS  PubMed  Google Scholar 

  32. Tasian G, Miller A, Lange D (2019) Antibiotics and kidney stones: perturbation of the gut-kidney axis. Am J Kidney Dis 74(6):724–726

    Article  PubMed  PubMed Central  Google Scholar 

  33. Goraya N et al (2019) Urine citrate excretion as a marker of acid retention in patients with chronic kidney disease without overt metabolic acidosis. Kidney Int 95(5):1190–1196

    Article  CAS  PubMed  Google Scholar 

  34. Goraya N et al (2019) Urine citrate excretion identifies changes in acid retention as eGFR declines in patients with chronic kidney disease. Am J Physiol Renal Physiol 317(2):F502–F511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Song Y et al (2016) Potassium citrate decreases urine calcium excretion in patients with hypocitraturic calcium oxalate nephrolithiasis. Urolithiasis 44(2):145–148

    Article  CAS  PubMed  Google Scholar 

  36. Strohmaier WL, Seilnacht J, Schubert G (2012) Urinary stone formers with hypocitraturia and ‘normal’ urinary pH are at high risk for recurrence. Urol Int 88(3):294–297

    Article  CAS  PubMed  Google Scholar 

  37. Zhao E et al (2021) Intestinal dysbacteriosis leads to kidney stone disease. Mol Med Rep. https://doi.org/10.3892/mmr.2020.11819

    Article  PubMed  PubMed Central  Google Scholar 

  38. Wang L et al (2022) Preventive effects of the Rehmannia glutinosa Libosch and Cornus officinalis Sieb herb couple on chronic kidney disease rats via modulating the intestinal microbiota and enhancing the intestinal barrier. Front Pharmacol 13:942032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ho HJ et al (2021) SGLT-1-specific inhibition ameliorates renal failure and alters the gut microbial community in mice with adenine-induced renal failure. Physiol Rep 9(24):e15092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Liu Y et al (2020) The relationship between gut microbiota and short chain fatty acids in the renal calcium oxalate stones disease. FASEB J 34(8):11200–11214

    Article  CAS  PubMed  Google Scholar 

  41. Chen R et al (2022) Gut microbiota diversity in middle-aged and elderly patients with end-stage diabetic kidney disease. Ann Transl Med 10(13):750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Wang X et al (2022) Modified Baihu decoction therapeutically remodels gut microbiota to inhibit acute gouty arthritis. Front Physiol 13:1023453

    Article  PubMed  PubMed Central  Google Scholar 

  43. Tang R et al (2018) 16S rRNA gene sequencing reveals altered composition of gut microbiota in individuals with kidney stones. Urolithiasis 46(6):503–514

    Article  CAS  PubMed  Google Scholar 

  44. Amatjan M et al (2023) A novel approach based on gut microbiota analysis and network pharmacology to explain the mechanisms of action of Cichorium intybus L. formula in the improvement of hyperuricemic nephropathy in rats. Drug Des Devel Ther 17:107–128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Chen H et al (2022) Establishment and analysis of a disease risk prediction model for the systemic lupus erythematosus with random forest. Front Immunol 13:1025688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ouyang D et al (2022) Prognostic analysis of pT1-T2aN0M0 cervical adenocarcinoma based on random survival forest analysis and the generation of a predictive nomogram. Front Oncol 12:1049097

    Article  PubMed  PubMed Central  Google Scholar 

  47. Yu M et al (2022) Understanding the gut-kidney axis in antineutrophil cytoplasmic antibody-associated vasculitis: an analysis of gut microbiota composition. Front Pharmacol 13:783679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Jiang Q et al (2018) Altered gut microbiome promotes proteinuria in mice induced by Adriamycin. AMB Express 8(1):31

    Article  PubMed  PubMed Central  Google Scholar 

  49. Pak CY (1994) Citrate and renal calculi: an update. Miner Electrolyte Metab 20(6):371–377

    CAS  PubMed  Google Scholar 

  50. Leslie SW, Sajjad H, Bashir K (2023) 24-Hour Urine testing for nephrolithiasis: interpretation guideline. Treasure Island (FL)

  51. Adak A, Khan MR (2019) An insight into gut microbiota and its functionalities. Cell Mol Life Sci 76(3):473–493

    Article  CAS  PubMed  Google Scholar 

  52. Baruch SB et al (1975) Renal metabolism of citrate. Med Clin North Am 59(3):569–582

    Article  CAS  PubMed  Google Scholar 

  53. Mycielska ME, James EN, Parkinson EK (2022) Metabolic alterations in cellular senescence: the role of citrate in ageing and age-related disease. Int J Mol Sci 23(7):3652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Mohammadi A et al (2022) Genetic polymorphisms and kidney stones around the globe: a systematic review and meta-analysis. Front Genet 13:913908

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Jv M et al (2023) Genetic mutation of SLC6A20 (c.1072T > C) in a family with nephrolithiasis: a case report. Open Med (Wars) 18(1):20230648

    Article  PubMed  Google Scholar 

  56. Ullah I et al (2022) Association study of CLDN14 variations in patients with kidney stones. Open Life Sci 17(1):81–92

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This research was funded by the Natural Science Foundation of Fujian Province (2022J01273, 2020J01222), and the Training Project of Young Talents in Fujian Provincial Health System (2019-ZQNB-9).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qingfu Su or Wei Zhuang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 23 KB)

Supplementary file2 (DOCX 16 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Chen, G., Chen, H. et al. Exploring the characteristics of gut microbiome in patients of Southern Fujian with hypocitraturia urolithiasis and constructing clinical diagnostic models. Int Urol Nephrol 55, 1917–1929 (2023). https://doi.org/10.1007/s11255-023-03662-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11255-023-03662-6

Keywords

Navigation