Skip to main content

Advertisement

Log in

Evaluation of Apelin-13 levels in patients with diabetic nephropathy

  • Nephrology - Original Paper
  • Published:
International Urology and Nephrology Aims and scope Submit manuscript

Abstract

Purpose

There is no clear information about the level of Apelin-13 in patients with diabetic nephropathy (DN). In this study, we investigated whether there is a relationship between Apelin-13 level and the severity of the disease in patients with DN.

Methods

In our case–control study, we included patients who applied to the endocrinology outpatient clinic in 2019. Patients without a history of diabetes were determined as the healthy group (group 1). The patients were divided into 4 groups according to their microalbumin and creatinine levels. Venous blood samples were obtained from all patients for routine laboratory parameters and Apelin-13 levels. Homeostatic Model Assessment-Insulin Resistance (HOMA-IR) for insulin resistance was calculated using the formula: plasma glucose X insulin level/405.

Results

Albumin was found to be significantly lower in group 5 (p = 0.032), hemoglobin A1c, microalbumin/creatinine and HOMA-IR values were found to be significantly lower in group 1 (p < 0.001 for each). Apelin-13 level was found to be significantly higher in group 4 and group 5 (p < 0.001). A negative correlation was found between Apelin-13 and GFR (r = − 0.286, p = 0.003). A positive correlation was found between Apelin-13 and HOMA-IR (r = 0.309, p = 0.009) and microalbumin/creatinine (r = 0.296, p < 0.001).

Conclusion

In patients with DN, Apelin-13 level increases with the severity of the disease and can be used as a biomarker for staging of DN.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Bennett PH, Knowler WC (2006) Definition, diagnosis, and classification of diabetes mellitus and glucose homeostasis. In: Weir CR, King CL, Moses AC, Smith RC, Jacobson AM, Kahn CR (eds) Joslin’s diabetes mellitus. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  2. Cho NH, Shaw JE, Karuranga S, Huang Y, da Rocha Fernandes JD, Ohlrogge AW, Malanda B (2018) IDF Diabetes Atlas: Global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Res Clin Pract 138:271–281. https://doi.org/10.1016/j.diabres.2018.02.023

    Article  CAS  Google Scholar 

  3. Davies MJ, D’Alessio DA, Fradkin J, Kernan WN, Mathieu C, Mingrone G, Rossing P, Tsapas A, Wexler DJ, Buse JB, Management of Hyperglycemia in Type 2 Diabetes, 2018 (2018) A Consensus Report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetes Care 41(12):2669–2701. https://doi.org/10.2337/dci18-0033

    Article  Google Scholar 

  4. Tuttle KR, Bakris GL, Bilous RW, Chiang JL, de Boer IH, Goldstein-Fuchs J, Hirsch IB, Kalantar-Zadeh K, Narva AS, Navaneethan SD, Neumiller JJ, Patel UD, Ratner RE, Whaley-Connell AT, Molitch ME (2014) Diabetic kidney disease: a report from an ADA Consensus Conference. Diabetes Care 37(10):2864–2883. https://doi.org/10.2337/dc14-1296

    Article  Google Scholar 

  5. Tatemoto K, Hosoya M, Habata Y, Fujii R, Kakegawa T, Zou MX, Kawamata Y, Fukusumi S, Hinuma S, Kitada C, Kurokawa T, Onda H, Fujino M (1998) Isolation and characterization of a novel endogenous peptide ligand for the human APJ receptor. Biochem Biophys Res Commun 251(2):471–476. https://doi.org/10.1006/bbrc.1998.9489

    Article  CAS  Google Scholar 

  6. Buyuksimsek M, Gulumsek E, Aslan MZ, Ozturk HA, Bashir AM, Icen YK, Ay N, Acibucu F, Koc M, Sumbul HE, Saler T (2020) Serum elabela levels are elevated in patients with hyperthyroidism. Tohoku J Exp Med 251(4):255–261. https://doi.org/10.1620/tjem.251.255

    Article  Google Scholar 

  7. Yasir M, Senthilkumar GP, Jayashree K, Ramesh Babu K, Vadivelan M, Palanivel C (2019) Association of serum omentin-1, apelin and chemerin concentrations with the presence and severity of diabetic retinopathy in type 2 diabetes mellitus patients. Arch Physiol Biochem. https://doi.org/10.1080/13813455.2019.1680698

    Article  Google Scholar 

  8. Chen H, Liu C, Cheng C, Zheng L, Huang K (2018) Effects of apelin peptides on diabetic complications. Curr Protein Pept Sci 19(2):179–189. https://doi.org/10.2174/1389203718666170918154728

    Article  CAS  Google Scholar 

  9. Alipour FG, Ashoori MR, Pilehvar-Soltanahmadi Y, Zarghami N (2017) An overview on biological functions and emerging therapeutic roles of apelin in diabetes mellitus. Diabetes Metab Syndr 11(Suppl 2):S919–S923. https://doi.org/10.1016/j.dsx.2017.07.016

    Article  Google Scholar 

  10. Hu H, He L, Li L, Chen L (2016) Apelin/APJ system as a therapeutic target in diabetes and its complications. Mol Genet Metab 119(1–2):20–27. https://doi.org/10.1016/j.ymgme.2016.07.012

    Article  CAS  Google Scholar 

  11. Read C, Nyimanu D, Williams TL, Huggins DJ, Sulentic P, Macrae R, Yang P, Glen RC, Maguire JJ, Davenport AP (2019) International Union of Basic and Clinical Pharmacology. CVII. Structure and pharmacology of the apelin receptor with a recommendation that elabela/toddler is a second endogenous peptide ligand. Pharmacol Rev 71(4):467–502. https://doi.org/10.1124/pr.119.017533

    Article  CAS  Google Scholar 

  12. Day RT, Cavaglieri RC, Feliers D (2013) Apelin retards the progression of diabetic nephropathy. Am J Physiol Renal Physiol 304(6):F788–F800. https://doi.org/10.1152/ajprenal.00306.2012

    Article  CAS  Google Scholar 

  13. Chen H, Li J, Jiao L, Petersen RB, Li J, Peng A, Zheng L, Huang K (2014) Apelin inhibits the development of diabetic nephropathy by regulating histone acetylation in Akita mouse. J Physiol 592(3):505–521. https://doi.org/10.1113/jphysiol.2013.266411

    Article  CAS  Google Scholar 

  14. Guo C, Liu Y, Zhao W, Wei S, Zhang X, Wang W, Zeng X (2015) Apelin promotes diabetic nephropathy by inducing podocyte dysfunction via inhibiting proteasome activities. J Cell Mol Med 19(9):2273–2285. https://doi.org/10.1111/jcmm.12619

    Article  CAS  Google Scholar 

  15. Liu Y, Zhang J, Wang Y, Zeng X (2017) Apelin involved in progression of diabetic nephropathy by inhibiting autophagy in podocytes. Cell Death Dis 8(8):e3006. https://doi.org/10.1038/cddis.2017.414

    Article  CAS  Google Scholar 

  16. Hus-Citharel A, Bouby N, Frugière A, Bodineau L, Gasc JM, Llorens-Cortes C (2008) Effect of apelin on glomerular hemodynamic function in the rat kidney. Kidney Int 74(4):486–494. https://doi.org/10.1038/ki.2008.199

    Article  CAS  Google Scholar 

  17. Erdem G, Dogru T, Tasci I, Sonmez A, Tapan S (2008) Low plasma apelin levels in newly diagnosed type 2 diabetes mellitus. Exp Clin Endocrinol Diabetes 116(5):289–292. https://doi.org/10.1055/s-2007-1004564

    Article  CAS  Google Scholar 

  18. Coskun Yavuz Y, Sevinc C, Deniz MS, Yavuz S, Altunoren O, Sayarlioglu H, Dogan E (2015) The role of Apelin 13 in progression of chronic kidney disease. Iran J Kidney Dis 9(5):369–373

    Google Scholar 

  19. Zhang H, Gong D, Ni L, Shi L, Xu W, Shi M, Chen J, Ai Y, Zhang X (2018) Serum elabela/toddler levels are associated with albuminuria in patients with type 2 diabetes. Cell Physiol Biochem 48(3):1347–1354. https://doi.org/10.1159/000492093

    Article  CAS  Google Scholar 

  20. Demirpence M, Yilmaz H, Colak A, Pamuk BO, Karakoyun I, Basok B (2018) Apelin: A potential novel serum biomarker for early detection of diabetic nephropathy in patients with type 2 diabetes. North Clin Istanb 6(2):151–155. https://doi.org/10.14744/nci.2018.6213421

    Article  Google Scholar 

  21. Boucher J, Masri B, Daviaud D, Gesta S, Guigné C, Mazzucotelli A, Castan-Laurell I, Tack I, Knibiehler B, Carpéné C, Audigier Y, Saulnier-Blache JS, Valet P (2005) Apelin, a newly identified adipokine up-regulated by insulin and obesity. Endocrinology 146(4):1764–1771. https://doi.org/10.1210/en.2004-1427

    Article  CAS  Google Scholar 

  22. Castan-Laurell I, Dray C, Attané C, Duparc T, Knauf C, Valet P (2011) Apelin, diabetes, and obesity. Endocrine 40(1):1–9. https://doi.org/10.1007/s12020-011-9507-9

    Article  CAS  Google Scholar 

  23. Gao Z, Zhong X, Tan YX, Liu D (2021) Apelin-13 alleviates diabetic nephropathy by enhancing nitric oxide production and suppressing kidney tissue fibrosis. Int J Mol Med 48(3):175. https://doi.org/10.3892/ijmm.2021.5008

    Article  CAS  Google Scholar 

  24. Zheng Q, Tian G, Xu F, Ci X, Luan R, Wu L, Lu X (2021) The role of Elabela in kidney disease. Int Urol Nephrol 53(9):1851–1857. https://doi.org/10.1007/s11255-021-02790-1

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gamze İçen.

Ethics declarations

Conflict of interest

None declared.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

İçen, G., Dağlıoğlu, G. & Evran, M. Evaluation of Apelin-13 levels in patients with diabetic nephropathy. Int Urol Nephrol 55, 345–353 (2023). https://doi.org/10.1007/s11255-022-03323-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11255-022-03323-0

Keywords

Navigation