Skip to main content

Advertisement

Log in

Hyperuricemia and hypertriglyceridemia indicate tubular atrophy/interstitial fibrosis in patients with IgA nephropathy and membranous nephropathy

  • Nephrology - Original Paper
  • Published:
International Urology and Nephrology Aims and scope Submit manuscript

Abstract

Purpose

Hyperuricemia (HUA) and hypertriglyceridemia (HTG) were very common in chronic kidney disease (CKD) and associated with accelerated progression of CKD. This was a retrospective, cross-sectional study which aimed to explore the relationship between serum uric acid levels or triglyceride levels and tubular atrophy/interstitial fibrosis (proven by renal biopsy).

Methods

The present study enrolled 229 CKD individuals who included 127 biopsy-proven primary IgA nephrology (IgAN) patients and 102 biopsy-proven primary membranous nephropathy (MN) patients. The baseline characteristics at the time of the kidney biopsy were collected. According to the serum uric acid (UA) or triglyceride (TG) whether it exceeds the normal reference range, patients were divided into non-HUA (n = 127), HUA (n = 102), non-HTG (n = 119), and HTG group (n = 110). Based on the extent of tubular atrophy/interstitial fibrosis, patients were divided into no/mild injury (T0, n = 127), moderate injury (T1, n = 102). Multivariable logistic regression for factors predicting moderate tubular atrophy/interstitial fibrosis was performed.

Results

There were 127 IgAN and 102 MN cases among 229 patients in the present study. The prevalence of HUA was 44.5% (n = 102), 40.9% (n = 52), and 49.0% (n = 50) in all patients, IgAN patients and MN patients, respectively (P = 1.49). The prevalence of HTG was 48.0% (n = 110), 29.9% (n = 38), and 70.6% (n = 72) (P < 0.001), respectively, as well. Multivariate logistic regression analysis showed that HUA and HTG were independent risk factors for moderate tubular atrophy/interstitial fibrosis (HUA OR = 2.335, 95% CI = 1.147–4.755, P = 0.019; HTG OR = 2.646, 95% CI = 1.289–5.432, P = 0.008). The area under curve (AUC) of model 1 (HUA + eGFR + HTG + age + serum globulin + 24 h urinary protein, AUC = 0.876) was larger than the other two models; however, there was no significant difference among these models (all P > 0.05).

Conclusions

Hyperuricemia and hypertriglyceridemia, which were prevalent in CKD patients, were the independent risk factors for moderate tubular atrophy/interstitial fibrosis. HUA together with HTG could improve the value of diagnosis for moderate tubular atrophy/interstitial fibrosis to some extent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

It is possible if wanted.

References

  1. Li L, Yang C, Zhao Y et al (2014) Is hyperuricemia an independent risk factor for new-onset chronic kidney disease? A systematic review and meta-analysis based on observational cohort studies. BMC Nephrol 15:122

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Tsuruya K, Yoshida H, Nagata M et al (2017) Association of hypertriglyceridemia with the incidence and progression of chronic kidney disease and modification of the association by daily alcohol consumption. J Ren Nutr 27(6):381–394

    Article  CAS  PubMed  Google Scholar 

  3. Tsuruya K, Yoshida H, Nagata M et al (2015) Impact of the triglycerides to high-density lipoprotein cholesterol ratio on the incidence and progression of ckd: a longitudinal study in a large Japanese population. Am J Kidney Dis 66(6):972–983

    Article  CAS  PubMed  Google Scholar 

  4. Xue N, Fang Y, Ding X et al (2019) Serum triglycerides are related to chronic kidney disease (CKD) stage 2 in young and middle-aged chinese individuals during routine health examination. Med Sci Monit 25:2445–2451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Toth PP, Philip S, Hull M et al (2019) Elevated triglycerides (≥150 mg/dL) and high triglycerides (200–499 mg/dl) are significant predictors of hospitalization for new-onset kidney disease: a real-world analysis of high-risk statin-treated patients. CardioRenal Med 9(6):400–407

    Article  CAS  PubMed  Google Scholar 

  6. Tsai CW, Lin SY, Kuo CC et al (2017) Serum uric acid and progression of kidney disease: a longitudinal analysis and mini-review. PLoS ONE 12(1):e170393

    Google Scholar 

  7. Hsieh YP, Chang CC, Yang Y et al (2017) The role of uric acid in chronic kidney disease patients. Nephrology 22(6):441–448

    Article  CAS  PubMed  Google Scholar 

  8. Weaver DJ (2019) Uric acid and progression of chronic kidney disease. Pediatr Nephrol 34(5):801–809

    Article  PubMed  Google Scholar 

  9. Caliskan Y, Ozluk Y, Celik D et al (2016) The clinical significance of uric acid and complement activation in the progression of IgA nephropathy. Kidney Blood Press Res 41(2):148–157

    Article  CAS  PubMed  Google Scholar 

  10. Zhu B, Yu DR, Lv JC et al (2018) Uric acid as a predictor of immunoglobulin a nephropathy progression: a cohort study of 1965 cases. Am J Nephrol 48(2):127–136

    Article  CAS  PubMed  Google Scholar 

  11. Syrjanen J, Mustonen J, Pasternack A (2000) Hypertriglyceridaemia and hyperuricaemia are risk factors for progression of IgA nephropathy. Nephrol Dial Transplant 15(1):34–42

    Article  CAS  PubMed  Google Scholar 

  12. Wang J, He L, Yan W et al (2020) The role of hypertriglyceridemia and treatment patterns in the progression of IgA nephropathy with a high proportion of global glomerulosclerosis. Int Urol Nephrol 52(2):325–335

    Article  PubMed  CAS  Google Scholar 

  13. Moorhead JF, Chan MK, El-Nahas M et al (1982) Lipid nephrotoxicity in chronic progressive glomerular and tubulo-interstitial disease. Lancet 2(8311):1309–1311

    Article  CAS  PubMed  Google Scholar 

  14. Srivastava A, Kaze AD, McMullan CJ et al (2018) Uric acid and the risks of kidney failure and death in individuals with CKD. Am J Kidney Dis 71(3):362–370

    Article  CAS  PubMed  Google Scholar 

  15. Madero M, Sarnak MJ, Wang X et al (2009) Uric acid and long-term outcomes in CKD. Am J Kidney Dis 53(5):796–803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Waring WS, Webb DJ, Maxwell SR (2001) Systemic uric acid administration increases serum antioxidant capacity in healthy volunteers. J Cardiovasc Pharmacol 38(3):365–371

    Article  CAS  PubMed  Google Scholar 

  17. Berkowitz D (1964) Blood lipid and uric acid interrelationships. JAMA 190:856–858

    Article  CAS  PubMed  Google Scholar 

  18. Peng TC, Wang CC, Kao TW et al (2015) Relationship between hyperuricemia and lipid profiles in US adults. Biomed Res Int 2015:127596

    PubMed  PubMed Central  Google Scholar 

  19. Zheng R, Ren P, Chen Q et al (2017) Serum uric acid levels and risk of incident hypertriglyceridemia: a longitudinal population-based epidemiological study. Ann Clin Lab Sci 47(5):586–591

    CAS  PubMed  Google Scholar 

  20. Kuwabara M, Borghi C, Cicero A et al (2018) Elevated serum uric acid increases risks for developing high LDL cholesterol and hypertriglyceridemia: a five-year cohort study in Japan. Int J Cardiol 261:183–188

    Article  PubMed  Google Scholar 

  21. Roberts IS, Cook HT, Troyanov S et al (2009) The Oxford classification of IgA nephropathy: pathology definitions, correlations, and reproducibility. Kidney Int 76(5):546–556

    Article  PubMed  Google Scholar 

  22. Cattran DC, Coppo R, Cook HT et al (2009) The Oxford classification of IgA nephropathy: rationale, clinicopathological correlations, and classification. Kidney Int 76(5):534–545

    Article  PubMed  Google Scholar 

  23. National Kidney Foundation (2002) K/DOQI clinical practice guidelines for chronic kidney disease: evaluation, classification, and stratification. Am J Kidney Dis 39(2 Suppl 1):S1–S266

    Google Scholar 

  24. Levey AS, Stevens LA, Schmid CH et al (2009) A new equation to estimate glomerular filtration rate. Ann Intern Med 150(9):604–612

    Article  PubMed  PubMed Central  Google Scholar 

  25. Ruan Y, Hong F, Wu J et al (2018) Clinicopathological characteristics, role of immunosuppressive therapy and progression in IgA nephropathy with hyperuricemia. Kidney Blood Press Res 43(4):1131–1140

    Article  CAS  PubMed  Google Scholar 

  26. Fan S, Zhang P, Wang AY et al (2019) Hyperuricemia and its related histopathological features on renal biopsy. BMC Nephrol 20(1):95

    Article  PubMed  PubMed Central  Google Scholar 

  27. Zhou J, Chen Y, Liu Y et al (2014) Plasma uric acid level indicates tubular interstitial leisions at early stage of IgA nephropathy. BMC Nephrol 15:11

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Myllymaki J, Honkanen T, Syrjanen J et al (2005) Uric acid correlates with the severity of histopathological parameters in IgA nephropathy. Nephrol Dial Transplant 20(1):89–95

    Article  PubMed  Google Scholar 

  29. Ames BN, Cathcart R, Schwiers E et al (1981) Uric acid provides an antioxidant defense in humans against oxidant and radical-caused aging and cancer: a hypothesis. Proc Natl Acad Sci USA 78(11):6858–6862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Glantzounis GK, Tsimoyiannis EC, Kappas AM et al (2005) Uric acid and oxidative stress. Curr Pharm Des 11(32):4145–4151

    Article  CAS  PubMed  Google Scholar 

  31. Yang D, Su Z, Wu S et al (2016) Low antioxidant status of serum bilirubin, uric acid, albumin and creatinine in patients with myasthenia gravis. Int J Neurosci 126(12):1120–1126

    Article  CAS  PubMed  Google Scholar 

  32. Ljubisavljevic S, Stojanovic I, Vojinovic S et al (2013) Association of serum bilirubin and uric acid levels changes during neuroinflammation in patients with initial and relapsed demyelination attacks. Metab Brain Dis 28(4):629–638

    Article  CAS  PubMed  Google Scholar 

  33. Zhou Y, Fang L, Jiang L et al (2012) Uric acid induces renal inflammation via activating tubular NF-kappaB signaling pathway. PLoS ONE 7(6):e39738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kurts C (2013) A crystal-clear mechanism of chronic kidney disease. Kidney Int 84(5):859–861

    Article  CAS  PubMed  Google Scholar 

  35. Yu MA, Sanchez-Lozada LG, Johnson RJ et al (2010) Oxidative stress with an activation of the renin-angiotensin system in human vascular endothelial cells as a novel mechanism of uric acid-induced endothelial dysfunction. J Hypertens 28(6):1234–1242

    Article  PubMed  CAS  Google Scholar 

  36. Corry DB, Eslami P, Yamamoto K et al (2008) Uric acid stimulates vascular smooth muscle cell proliferation and oxidative stress via the vascular renin-angiotensin system. J Hypertens 26(2):269–275

    Article  CAS  PubMed  Google Scholar 

  37. Zoccali C, Maio R, Mallamaci F et al (2006) Uric acid and endothelial dysfunction in essential hypertension. J Am Soc Nephrol 17(5):1466–1471

    Article  CAS  PubMed  Google Scholar 

  38. Mallat SG, Al KS, Tanios BY et al (2016) Hyperuricemia, hypertension, and chronic kidney disease: an emerging association. Curr Hypertens Rep 18(10):74

    Article  PubMed  CAS  Google Scholar 

  39. Ryu ES, Kim MJ, Shin HS et al (2013) Uric acid-induced phenotypic transition of renal tubular cells as a novel mechanism of chronic kidney disease. Am J Physiol Renal Physiol 304(5):F471–F480

    Article  CAS  PubMed  Google Scholar 

  40. Du XG, Ruan XZ (2019) Lipid metabolism disorder and renal fibrosis. Adv Exp Med Biol 1165:525–541

    Article  CAS  PubMed  Google Scholar 

  41. Sanchez-Lozada LG, Tapia E, Santamaria J et al (2005) Mild hyperuricemia induces vasoconstriction and maintains glomerular hypertension in normal and remnant kidney rats. Kidney Int 67(1):237–247

    Article  PubMed  Google Scholar 

  42. Sanchez-Lozada LG, Tapia E, Soto V et al (2008) Treatment with the xanthine oxidase inhibitor febuxostat lowers uric acid and alleviates systemic and glomerular hypertension in experimental hyperuricaemia. Nephrol Dial Transplant 23(4):1179–1185

    Article  CAS  PubMed  Google Scholar 

  43. Goicoechea M, de Vinuesa SG, Verdalles U et al (2010) Effect of allopurinol in chronic kidney disease progression and cardiovascular risk. Clin J Am Soc Nephrol 5(8):1388–1393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

All of the authors declare that they have no conflict of interest. We thank all the patients involved in this study.

Funding

None.

Author information

Authors and Affiliations

Authors

Contributions

XS and BL designed this study; BL, LZ, QY, and DZ collected the data; BL contributed to the statistical analysis; BL drafted manuscript; XS, DZ, and BL revised the manuscript. All authors approved the final version.

Corresponding author

Correspondence to Xiaoyun Si.

Ethics declarations

Conflict of interest

All of the authors declare that they have no conflict of interest.

Ethical approval

This is an observational study. The Medical Ethics Committee of the Zhongnan Hospital of Wuhan University has confirmed that no ethical approval is required.

Informed consent

Written informed consent was obtained from all participants.

Consent for publication

All of the authors declare their consent for publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, B., Zhao, L., Yang, Q. et al. Hyperuricemia and hypertriglyceridemia indicate tubular atrophy/interstitial fibrosis in patients with IgA nephropathy and membranous nephropathy. Int Urol Nephrol 53, 2321–2332 (2021). https://doi.org/10.1007/s11255-021-02844-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11255-021-02844-4

Keywords

Navigation