Skip to main content
Log in

Evaluation of serum fatty acid binding protein-4 (FABP-4) as a novel biomarker to predict biopsy outcomes in prostate biopsy naïve patients

  • Urology - Original Paper
  • Published:
International Urology and Nephrology Aims and scope Submit manuscript

Abstract

Objectives

To investigate the role of serum fatty acid-binding protein-4 (FABP-4) as a surrogate of obesity and metabolic syndrome in the prediction of the outcome of prostate biopsy.

Methods

A prospective pilot study was conducted for patients undergoing prostate needle biopsy (PNB) for clinically suspected prostate cancer (PCa) between June 2016 and August 2017. Fifty consecutive patients with biopsy-proven PCa were included as study group and 50 consecutive patients with negative biopsy were included as a control group. Receiver Operating Characteristic (ROC) curve was used to calculate the area under the curve (AUC) to compare the accuracy of the different parameters in the diagnosis as well as the presence of high-grade PCa (Gleason score 8–9) at PNB. Predictors of the outcome were analyzed using univariate and multivariate logistic regression analysis.

Results

FABP-4 (AUC: 0.75; P < 0.001) and PSA-density (AUC: 0.84; P < 0.001) were the most accurate to detect PCa at PNB. On multivariate analysis, FABP-4 > 22.5 ng/ml (OR: 16.6; 95% CI 2.8–98; P = 0.002) and PSA-density > 0.38 ng/ml/ml OR: 17.7; 95% CI 5.3–59; P < 0.001) were independent predictors of PCa detection. Regarding high-grade PCa at PNB, FABP-4 (AUC: 0.79; P < 0.001) and %Free-PSA (AUC: 0.75; P < 0.001) were the most accurate. Independent predictors of high-grade PCa were FABP-4 > 32.3 ng/ml OR: 9.2; 95% CI 1.8–45; P = 0.006) and %Free-PSA ≤ 21.9 (OR: 5.5; 95% CI 1.1–27; P = 0.03).

Conclusions

FABP-4 is an independent predictor for both the diagnosis and high-grade Gleason score at PNB. This novel biomarker might have a promising role in optimizing PNB outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

FBS:

Fasting blood sugar

FABP-4:

Fatty acid-binding protein-4

MS:

Metabolic syndrome

PCa:

Prostate cancer

PNB:

Prostate needle biopsy

References

  1. Finucane MM, Stevens GA, Cowan MJ, Danaei G, Lin JK, Paciorek CJ, Singh GM, Gutierrez HR, Lu Y, Bahalim AN, Farzadfar F, Riley LM, Ezzati M (2011) National, regional, and global trends in body-mass index since 1980: systematic analysis of health examination surveys and epidemiological studies with 960 country-years and 9·1 million participants. Lancet 377(9765):557–567. https://doi.org/10.1016/S0140-6736(10)62037-5

    Article  PubMed  PubMed Central  Google Scholar 

  2. Uzunlulu M, Telci Caklili O, Oguz A (2016) Association between metabolic syndrome and cancer. Ann Nutr Metab 68(3):173–179. https://doi.org/10.1159/000443743

    Article  CAS  PubMed  Google Scholar 

  3. Kyung YS, You D, Jeong IG, Han S, Kim HK, Kim CS (2017) Changes in weight and metabolic syndrome are associated with prostate growth rate over a 5-year period. Urology 103:185–190. https://doi.org/10.1016/j.urology.2016.09.044

    Article  PubMed  Google Scholar 

  4. Cicione A, De Nunzio C, Tubaro A, Cantiello F, Manno S, Oliveira C, Lima E, Damiano R (2016) Metabolic syndrome diagnosis and widespread high grade prostatic intraepithelial neoplasia significantly increase prostate cancer risk: results from a multicenter biopsy study. BMC Cancer 16:59. https://doi.org/10.1186/s12885-016-2085-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hammarsten J, Damber JE, Haghsheno MA, Mellstrom D, Peeker R (2018) A stage-dependent link between metabolic syndrome components and incident prostate cancer. Nat Rev Urol 15(5):321–333. https://doi.org/10.1038/nrurol.2018.8

    Article  PubMed  Google Scholar 

  6. Di Francesco S, Tenaglia RL (2017) Metabolic syndrome and aggressive prostate cancer at initial diagnosis. Hormon Metab Res (Hormon- und Stoffwechselforschung Hormones et Metabolisme) 49(7):507–509. https://doi.org/10.1055/s-0043-109866

    Article  CAS  Google Scholar 

  7. Cosimo N, Aldo B, Giuseppe S, Riccardo L, Riccardo M, Devis C, Giovanni M, Michele G, Andrea T (2018) Metabolic syndrome increases the risk of upgrading and upstaging in patients with prostate cancer on biopsy: a radical prostatectomy multicenter cohort study. Prostate Cancer Prostatic Dis. https://doi.org/10.1038/s41391-018-0054-9

    Article  Google Scholar 

  8. De Nunzio C, Truscelli G, Trucchi A, Petta S, Tubaro M, Gacci M, Gaudio C, Presicce F, Tubaro A (2016) Metabolic abnormalities linked to an increased cardiovascular risk are associated with high-grade prostate cancer: a single biopsy cohort analysis. Prostate Cancer Prostatic Dis 19(1):35–39. https://doi.org/10.1038/pcan.2015.45

    Article  CAS  PubMed  Google Scholar 

  9. Lebdai S, Mathieu R, Leger J, Haillot O, Vincendeau S, Rioux-Leclercq N, Fournier G, Perrouin-Verbe MA, Doucet L, Azzouzi AR, Rigaud J, Renaudin K, Charles T, Bruyere F, Fromont G (2018) Metabolic syndrome and low high-density lipoprotein cholesterol are associated with adverse pathological features in patients with prostate cancer treated by radical prostatectomy. Urol Oncol 36(2):80.e17–80.e24. https://doi.org/10.1016/j.urolonc.2017.09.026

    Article  CAS  Google Scholar 

  10. De Nunzio C, Simone G, Brassetti A, Mastroianni R, Collura D, Muto G, Gallucci M, Tubaro A (2016) Metabolic syndrome is associated with advanced prostate cancer in patients treated with radical retropubic prostatectomy: results from a multicentre prospective study. BMC Cancer 16:407. https://doi.org/10.1186/s12885-016-2442-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bhindi B, Xie WY, Kulkarni GS, Hamilton RJ, Nesbitt M, Finelli A, Zlotta AR, Evans A, van der Kwast TH, Alibhai SM, Trachtenberg J, Fleshner NE (2016) Influence of metabolic syndrome on prostate cancer stage, grade, and overall recurrence risk in men undergoing radical prostatectomy. Urology 93:77–85. https://doi.org/10.1016/j.urology.2016.01.041

    Article  PubMed  Google Scholar 

  12. Dirat B, Bochet L, Dabek M, Daviaud D, Dauvillier S, Majed B, Wang YY, Meulle A, Salles B, Le Gonidec S, Garrido I, Escourrou G, Valet P, Muller C (2011) Cancer-associated adipocytes exhibit an activated phenotype and contribute to breast cancer invasion. Cancer Res 71(7):2455

    Article  CAS  Google Scholar 

  13. Guaita-Esteruelas S, Guma J, Masana L, Borras J (2017) The peritumoural adipose tissue microenvironment and cancer. The roles of fatty acid binding protein 4 and fatty acid binding protein 5. Mol Cell Endocrinol. https://doi.org/10.1016/j.mce.2017.02.002

    Article  PubMed  Google Scholar 

  14. Thumser AE, Moore JB, Plant NJ (2014) Fatty acid binding proteins: tissue-specific functions in health and disease. Curr Opin Clin Nutr Metab Care 17(2):124–129. https://doi.org/10.1097/mco.0000000000000031

    Article  CAS  PubMed  Google Scholar 

  15. Uehara H, Takahashi T, Oha M, Ogawa H, Izumi K (2014) Exogenous fatty acid binding protein 4 promotes human prostate cancer cell progression. Int J Cancer 135(11):2558–2568. https://doi.org/10.1002/ijc.28903

    Article  CAS  PubMed  Google Scholar 

  16. Uehara H, Kobayashi T, Matsumoto M, Watanabe S, Yoneda A, Bando Y (2018) Adipose tissue: critical contributor to the development of prostate cancer. J Med Invest JMI 65(1.2):9–17. https://doi.org/10.2152/jmi.65.9

    Article  PubMed  Google Scholar 

  17. Hoogland AM, Kweldam CF, van Leenders GJ (2014) Prognostic histopathological and molecular markers on prostate cancer needle-biopsies: a review. Biomed Res Int 2014:341324. https://doi.org/10.1155/2014/341324

    Article  PubMed  PubMed Central  Google Scholar 

  18. Ceylan C, Gazel E, Keles I, Doluoglu O, Yigman M (2016) Can the free/total PSA ratio predict the Gleason score before prostate biopsy? Curr Urol 9(1):24–27. https://doi.org/10.1159/000442846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Auprich M, Bjartell A, Chun FK, de la Taille A, Freedland SJ, Haese A, Schalken J, Stenzl A, Tombal B, van der Poel H (2011) Contemporary role of prostate cancer antigen 3 in the management of prostate cancer. Eur Urol 60(5):1045–1054. https://doi.org/10.1016/j.eururo.2011.08.003

    Article  CAS  PubMed  Google Scholar 

  20. van den Bergh RC, Roemeling S, Roobol MJ, Wolters T, Schroder FH, Bangma CH (2008) Prostate-specific antigen kinetics in clinical decision-making during active surveillance for early prostate cancer—a review. Eur Urol 54(3):505–516. https://doi.org/10.1016/j.eururo.2008.06.040

    Article  CAS  PubMed  Google Scholar 

  21. Mottet N, Bellmunt J, Bolla M, Briers E, Cumberbatch MG, De Santis M, Fossati N, Gross T, Henry AM, Joniau S, Lam TB, Mason MD, Matveev VB, Moldovan PC, van den Bergh RCN, Van den Broeck T, van den Poel HG, van der Kwast TH, Rouviere O, Schoots IG, Wiegel T, Cornford P (2017) EAU-ESTRO-SIOG guidelines on prostate cancer. Part 1: screening, diagnosis, and local treatment with curative intent. Eur Urol. https://doi.org/10.1016/j.eururo.2016.08.003

    Article  PubMed  Google Scholar 

  22. McKenney JK, Simko J, Bonham M, True LD, Troyer D, Hawley S, Newcomb LF, Fazli L, Kunju LP, Nicolas MM, Vakar-Lopez F, Zhang X, Carroll PR, Brooks JD, Canary/Early Detection Research Network Prostate Active Surveillance Study I (2011) The potential impact of reproducibility of Gleason grading in men with early stage prostate cancer managed by active surveillance: a multi-institutional study. J Urol 186(2):465–469. https://doi.org/10.1016/j.juro.2011.03.115

    Article  PubMed  Google Scholar 

  23. Cooperberg MR, Broering JM, Carroll PR (2010) Time trends and local variation in primary treatment of localized prostate cancer. J Clin Oncol 28(7):1117–1123. https://doi.org/10.1200/JCO.2009.26.0133

    Article  PubMed  PubMed Central  Google Scholar 

  24. Soloway MS, Soloway CT, Eldefrawy A, Acosta K, Kava B, Manoharan M (2010) Careful selection and close monitoring of low-risk prostate cancer patients on active surveillance minimizes the need for treatment. Eur Urol 58(6):831–835. https://doi.org/10.1016/j.eururo.2010.08.027

    Article  PubMed  Google Scholar 

  25. Nieman KM, Romero IL, van Houten B (1831) Lengyel E (2013) Adipose tissue and adipocytes support tumorigenesis and metastasis. Biochim Biophys Acta 10:1533–1541. https://doi.org/10.1016/j.bbalip.2013.02.010

    Article  CAS  Google Scholar 

  26. Huang M, Narita S, Inoue T, Koizumi A, Saito M, Tsuruta H, Numakura K, Satoh S, Nanjo H, Sasaki T, Habuchi T (2017) Fatty acid binding protein 4 enhances prostate cancer progression by upregulating matrix metalloproteinases and stromal cell cytokine production. Oncotarget 8(67):111780–111794. https://doi.org/10.18632/oncotarget.22908

    Article  PubMed  PubMed Central  Google Scholar 

  27. Guaita-Esteruelas S, Guma J, Masana L, Borras J (2018) The peritumoural adipose tissue microenvironment and cancer. The roles of fatty acid binding protein 4 and fatty acid binding protein 5. Mol Cell Endocrinol 462(Pt B):107–118. https://doi.org/10.1016/j.mce.2017.02.002

    Article  CAS  PubMed  Google Scholar 

  28. Wang Y, Guo W, Xu H, Zhu X, Yu T, Jiang Z, Jiang Q, Gang X (2018) An extensive study of the mechanism of prostate cancer metastasis. Neoplasma 65(2):253–261. https://doi.org/10.4149/neo_2018_161217N648

    Article  CAS  PubMed  Google Scholar 

  29. Washino S, Okochi T, Saito K, Konishi T, Hirai M, Kobayashi Y, Miyagawa T (2017) Combination of prostate imaging reporting and data system (PI-RADS) score and prostate-specific antigen (PSA) density predicts biopsy outcome in prostate biopsy naive patients. BJU Int 119(2):225–233. https://doi.org/10.1111/bju.13465

    Article  CAS  PubMed  Google Scholar 

  30. Xu A, Wang Y, Xu JY, Stejskal D, Tam S, Zhang J, Wat NM, Wong WK, Lam KS (2006) Adipocyte fatty acid-binding protein is a plasma biomarker closely associated with obesity and metabolic syndrome. Clin Chem 52(3):405–413. https://doi.org/10.1373/clinchem.2005.062463

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed M. Harraz.

Ethics declarations

Conflict of interest

The authors declare that they do not have any conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Harraz, A.M., Atia, N., Ismail, A. et al. Evaluation of serum fatty acid binding protein-4 (FABP-4) as a novel biomarker to predict biopsy outcomes in prostate biopsy naïve patients. Int Urol Nephrol 52, 1483–1490 (2020). https://doi.org/10.1007/s11255-020-02426-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11255-020-02426-w

Keywords

Navigation