Skip to main content

Advertisement

Log in

Hydrogen sulfide-induced relaxation of the bladder is attenuated in spontaneously hypertensive rats

  • Urology - Original Paper
  • Published:
International Urology and Nephrology Aims and scope Submit manuscript

Abstract

Purpose

To compare hydrogen sulfide (H2S)-induced relaxation on the bladder between normotensive and spontaneously hypertensive rat (SHR), we evaluated the effects of H2S donors (GYY4137 and NaHS) on the micturition reflex and on the contractility of bladder tissues. We also investigated the content of H2S and the expression levels of enzymes related to H2S biosynthesis [cystathionine β-synthase (CBS), 3-mercaptopyruvate sulfurtransferase (MPST), and cysteine aminotransferase (CAT)] in the bladder.

Methods

Eighteen-week-old male normotensive Wistar rats and SHRs were used. Under urethane anesthesia, the effects of intravesically instilled GYY4137 (10−8, 10−7 and 10−6 M) on the micturition reflex were evaluated by cystometry. The effects of NaHS (1 × 10−8–3 × 10−4 M) were evaluated on carbachol (10−5 M)-induced pre-contracted bladder strips. Tissue H2S content was measured by the methylene blue method. The expression levels of these enzymes were investigated by Western blot.

Results

GYY4137 significantly prolonged intercontraction intervals in Wistar rats, but not in SHRs. NaHS-induced relaxation on pre-contracted bladder strips was significantly attenuated in SHRs compared with Wistar rats. The H2S content in the bladder of SHRs was significantly higher than that of Wistar rats. CBS, MPST and CAT were detected in the bladder of Wistar rats and SHRs. The expression levels of MPST in the SHR bladder were significantly higher than those in the Wistar rat bladder.

Conclusion

H2S-induced bladder relaxation in SHRs is impaired, thereby resulting in a compensatory increase of the H2S content in the SHR bladder.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

BBF:

Bladder blood flow

BBR:

Bladder body weight ratio

BL-D:

Bladder dome

BL-T:

Bladder trigone

CAT:

Cysteine aminotransferase

CBS:

Cystathionine β-synthase

CSE:

Cystathionine γ-lyase

DO:

Detrusor overactivity

IACUC:

Institutional Animal Care and Use Committees

ICI:

Intercontraction intervals

KATP channel:

ATP-sensitive potassium channel

LUTS:

Lower urinary tract symptoms

MPST:

3-Mercaptopyruvate sulfurtransferase

MVP:

Maximal voiding pressure

NO:

Nitric oxide

OAB:

Overactive bladder

SHR:

Spontaneously hypertensive rat

References

  1. Huang CW, Moore PK (2015) H2S synthesizing enzymes: biochemistry and molecular aspects. Handb Exp Pharmacol 230:3–25

    Article  CAS  PubMed  Google Scholar 

  2. Kimura H (2015) Signaling molecules: hydrogen sulfide and polysulfide. Antioxid Redox Signal 22:362–376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Gemici B, Elsheikh W, Feitosa KB et al (2015) H2S-releasing drugs: anti-inflammatory, cytoprotective and chemopreventative potential. Nitric Oxide 46:25–31

    Article  CAS  PubMed  Google Scholar 

  4. Kimura H (2014) The physiological role of hydrogen sulfide and beyond. Nitric Oxide 41:4–10

    Article  CAS  PubMed  Google Scholar 

  5. Yang G, Wu L, Jiang B et al (2008) H2S as a physiologic vasorelaxant: hypertension in mice with deletion of cystathionine γ-lyase. Science 322:587–590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ozatik FY, Teksen Y, Kadioglu E et al (2019) Effects of hydrogen sulfide on acetaminophen-induced acute renal toxicity in rats. Int Urol Nephrol 51:745–754

    Article  CAS  PubMed  Google Scholar 

  7. Fernandes VS, Xin W, Petkov GV (2015) Novel mechanism of hydrogen sulfide-induced guinea pig urinary bladder smooth muscle contraction: role of BK channels and cholinergic neurotransmission. Am J Physiol Cell Physiol 309:C107–C116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Patacchini R, Santicioli P, Giuliani S et al (2005) Pharmacological investigation of hydrogen sulfide (H2S) contractile activity in rat detrusor muscle. Eur J Pharmacol 509:171–177

    Article  CAS  PubMed  Google Scholar 

  9. Fernandes VS, Ribeiro AS, Martínez MP et al (2013) Endogenous hydrogen sulfide has a powerful role in inhibitory neurotransmission to the pig bladder neck. J Urol 189:1567–1573

    Article  CAS  PubMed  Google Scholar 

  10. Gai JW, Wahafu W, Guo H et al (2013) Further evidence of endogenous hydrogen sulphide as a mediator of relaxation in human and rat bladder. Asian J Androl 15:692–696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zou S, Shimizu T, Shimizu S et al (2018) Possible role of hydrogen sulfide as an endogenous relaxation factor in the rat bladder and prostate. Neurourol Urodyn 37:2519–2526

    Article  CAS  PubMed  Google Scholar 

  12. Azadzoi KM, Tarcan T, Kozlowski R et al (1999) Overactivity and structural changes in the chronically ischemic bladder. J Urol 162:1768–1778

    Article  CAS  PubMed  Google Scholar 

  13. Nomiya M, Sagawa K, Yazaki J et al (2012) Increased bladder activity is associated with elevated oxidative stress markers and proinflammatory cytokines in a rat model of atherosclerosis-induced chronic bladder ischemia. Neurourol Urodyn 31:185–189

    Article  CAS  PubMed  Google Scholar 

  14. Pinggera GM, Mitterberger M, Steiner E et al (2008) Association of lower urinary tract symptoms and chronic ischaemia of the lower urinary tract in elderly women and men: assessment using colour Doppler ultrasonography. BJU Int 102:470–474

    Article  PubMed  Google Scholar 

  15. Pinggera GM, Mitterberger M, Pallwein L et al (2008) α-Blockers improve chronic ischaemia of the lower urinary tract in patients with lower urinary tract symptoms. BJU Int 101:319–324

    Article  CAS  PubMed  Google Scholar 

  16. Shimizu S, Tsounapi P, Shimizu T et al (2014) Lower urinary tract symptoms, benign prostatic hyperplasia/benign prostatic enlargement and erectile dysfunction: are these conditions related to vascular dysfunction? Int J Urol 21:856–864

    Article  PubMed  Google Scholar 

  17. Tarcan T, Azadzoi KM, Siroky MB et al (1998) Age-related erectile and voiding dysfunction: the role of arterial insufficiency. Br J Urol 82(Suppl 1):26–33

    Article  PubMed  Google Scholar 

  18. Yono M, Yamamoto Y, Yoshida M et al (2007) Effects of doxazosin on blood flow and mRNA expression of nitric oxide synthase in the spontaneously hypertensive rat genitourinary tract. Life Sci 81:218–222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Yono M, Tanaka T, Tsuji S et al (2011) Effects of age and hypertension on α1-adrenoceptors in the major source arteries of the rat bladder and penis. Eur J Pharmacol 670:260–265

    Article  CAS  PubMed  Google Scholar 

  20. Jin JH, Lee HJ, Shin HY et al (2011) Development and changes with age of detrusor overactivity in spontaneous hypertensive rats as observed by simultaneous registrations of intravesical and intraabdominal pressures. Int Neurourol J 15:192–198

    Article  PubMed  PubMed Central  Google Scholar 

  21. Persson K, Pandita RK, Spitsbergen JM et al (1998) Spinal and peripheral mechanisms contributing to hyperactive voiding in spontaneously hypertensive rats. Am J Physiol 275:R1366–R1373

    CAS  PubMed  Google Scholar 

  22. Steers WD, Clemow DB, Persson K et al (1999) The spontaneously hypertensive rat: insight into the pathogenesis of irritative symptoms in benign prostatic hyperplasia and young anxious males. Exp Physiol 84:137–147

    Article  CAS  PubMed  Google Scholar 

  23. Inoue S, Saito M, Tsounapi P et al (2012) Effect of silodosin on detrusor overactivity in the male spontaneously hypertensive rat. BJU Int 110:E118–E124

    Article  CAS  PubMed  Google Scholar 

  24. Saito M, Ohmasa F, Tsounapi P et al (2012) Nicorandil ameliorates hypertension-related bladder dysfunction in the rat. Neurouro Urodyn 31:695–701

    Article  CAS  Google Scholar 

  25. Swan KW, Song BM, Chen AL et al (2017) Analysis of decreases in systemic arterial pressure and heart rate in response to the hydrogen sulfide donor sodium sulfide. Am J Phsiol Heart Circ Physiol 313:H732–H743

    Article  CAS  Google Scholar 

  26. Yan H, Du J, Tang C (2004) The possible role of hydrogen sulfide on the pathogenesis of spontaneous hypertension in rats. Biochem Biophys Res Commun 313:22–27

    Article  CAS  PubMed  Google Scholar 

  27. Yu W, Liao Y, Huang Y et al (2017) Endogenous hydrogen sulfide enhances carotid sinus baroreceptor sensitivity by activating the transient receptor potential cation channel subfamily V member 1 (TRPV1) channel. J Am Heart Assoc 6:e004971

    PubMed  PubMed Central  Google Scholar 

  28. Saito M, Tsounapi P, Oikawa R et al (2014) Prostatic ischemia induces ventral prostatic hyperplasia in the SHR; possible mechanism of development of BPH. Sci Rep 4:3822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Szabo C, Papapetropoulos A (2017) International union of basic and clinical pharmacology. CII: pharmacological modulation of H2S levels: H2S donors and H2S biosynthesis inhibitors. Pharmacol Rev 69:497–564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Saito M, Shimizu S, Kinoshita Y et al (2010) Bladder dysfunction after acute urinary retention in the rats: a novel over active bladder model. Mol Cell Biochem 333:109–114

    Article  CAS  PubMed  Google Scholar 

  31. Mok YY, Atan MS, Yoke Ping C et al (2004) Role of hydrogen sulphide in haemorrhagic shock in the rat: protective effect of inhibitors of hydrogen sulphide biosynthesis. Br J Pharmacol 143:881–889

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Saito M, Tominaga L, Nanba E et al (2005) Expression of HSP 70 and its mRNAS during ischemia-reperfusion in the rat bladder. Life Sci 75:1879–1886

    Article  CAS  Google Scholar 

  33. Fukuda S, Tsuchikura S, Iida H (2004) Age-related changes in blood pressure, hematological values, concentrations of serum biochemical constituents and weights of organs in the SHR/Izm, SHRSP/Izm and WKY/Izm. Exp Anim 53:67–72

    Article  CAS  PubMed  Google Scholar 

  34. Berenyiova A, Drobna M, Cebova M et al (2018) Changes in the vasoactive effects of nitric oxide, hydrogen sulfide and the structure of the rat thoracic aorta: the role of age and essential hypertension. J Physiol Pharmacol 69:1–12

    Google Scholar 

  35. de Groat WC (1997) Neurologic basis for the overactive bladder. Urology 50:36–56

    Article  PubMed  Google Scholar 

  36. Leon LA, Hoffman BE, Gardner SD et al (2008) Effects of the β3-adrenergic receptor agonist disodium 5-[(2R)-2-[[(2R)-2-(3-chlorophenyl)-2-hydroxyethyl]amino]propyl]-1,3-benzodioxole-2,2-dicarboxylate (CL-316243) on bladder micturition reflex in spontaneously hypertensive rats. J Pharmacol Exp Ther 326:178–185

    Article  CAS  PubMed  Google Scholar 

  37. Sun Y, Huang Y, Zhang R et al (2015) Hydrogen sulfide upregulates KATP channel expression in vascular smooth muscle cells of spontaneously hypertensive rats. J Mol Med 93:439–455

    Article  CAS  PubMed  Google Scholar 

  38. Zhao X, Zhang LK, Zhang CY et al (2008) Regulatory effect of hydrogen sulfide on vascular collagen content in spontaneously hypertensive rats. Hypertens Res 31:1619–1630

    Article  CAS  PubMed  Google Scholar 

  39. Szabo C (2017) Hydrogen sulfide, an enhancer of vascular nitric oxide signaling: mechanisms and implications. Am J Physiol Cell Physiol 312:C3–C15

    Article  PubMed  Google Scholar 

  40. Fujiwara M, Andersson K, Persson K (2000) Nitric oxide-induced cGMP accumulation in the mouse bladder is not related to smooth muscle relaxation. Eur J Pharmacol 401:241–250

    Article  CAS  PubMed  Google Scholar 

  41. Mamas MA, Reynard JM, Brading AF (2003) Nitric oxide and the lower urinary tract: current concepts, future prospects. Urology 61:1079–1085

    Article  PubMed  Google Scholar 

  42. Ozawa H, Chancellor MB, Jung SY et al (1999) Effect of intravesical nitric oxide therapy on cyclophosphamide-induced cystitis. J Urol 162:2211–2216

    Article  CAS  PubMed  Google Scholar 

  43. Yu Y, de Groat WC (2013) Nitric oxide modulates bladder afferent nerve activity in the in vitro urinary bladder-pelvic nerve preparation from rats with cyclophosphamide induced cystitis. Brain Res 1490:83–94

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported in part by a Grant-in-Aid for Challenging Exploratory Research (No. 15K15583 to M.S.) from the Japan Society for the Promotion of Science, and GSK Japan Research Grant 2017.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takahiro Shimizu.

Ethics declarations

Conflict of interest

None of the contributing authors have any conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zou, S., Shimizu, T., Yamamoto, M. et al. Hydrogen sulfide-induced relaxation of the bladder is attenuated in spontaneously hypertensive rats. Int Urol Nephrol 51, 1507–1515 (2019). https://doi.org/10.1007/s11255-019-02222-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11255-019-02222-1

Keywords

Navigation