Skip to main content

Advertisement

Log in

Progenitor/stem cells in renal regeneration and mass lesions

  • Nephrology - Review
  • Published:
International Urology and Nephrology Aims and scope Submit manuscript

Abstract

Adult kidneys have limited regenerative capacity following a prominent acute kidney injury. As understanding regenerative mechanisms is the key to discovering therapeutic strategies for preventing and treating renal diseases, in recent years, researchers have hotly debated whether progenitor/stem cells offer a support system for renal repair. The Romagnani-led group identified CD133 stem cells in the parietal epithelium and renal tubules, and their data indicate that these progenitor/stem cells support renal repair in the glomeruli and renal tubules. The Humphreys and Bonventre group used the lineage-tracing technique. They observed no contribution of progenitor cells to tubular repair, but they later reported that the differentiated tubular cells responsible for tubular repair actually gained some characteristics of progenitor cells. This review article will focus on major updates regarding the controversial progenitor/stem cells in renal regeneration and highlight some new progenitor cell issues in renal mass lesions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Brabletz S, Schmalhofer O, Brabletz T (2009) Gastrointestinal stem cells in development and cancer. J Pathol 217(2):307–317

    Article  PubMed  CAS  Google Scholar 

  2. Ambler CA, Maatta A (2009) Epidermal stem cells: location, potential and contribution to cancer. J Pathol 217(2):206–216

    Article  PubMed  CAS  Google Scholar 

  3. Snippert HJ, van der Flier LG, Sato T et al (2010) Intestinal crypt homeostasis results from neutral competition between symmetrically dividing Lgr5 stem cells. Cell 143(1):134–144

    Article  PubMed  CAS  Google Scholar 

  4. Snippert HJ, van Es JH, van den Born M et al (2009) Prominin-1/CD133 marks stem cells and early progenitors in mouse small intestine. Gastroenterology 136(7):2187–2194 e2181

    Article  PubMed  CAS  Google Scholar 

  5. Neal MD, Richardson WM, Sodhi CP, Russo A, Hackam DJ (2011) Intestinal stem cells and their roles during mucosal injury and repair. J Surg Res 167(1):1–8

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  6. Lopez-Garcia C, Klein AM, Simons BD, Winton DJ (2010) Intestinal stem cell replacement follows a pattern of neutral drift. Science 330(6005):822–825

    Article  PubMed  CAS  Google Scholar 

  7. Alison MR, Islam S (2009) Attributes of adult stem cells. J Pathol 217(2):144–160

    Article  PubMed  CAS  Google Scholar 

  8. Zelikovic I, Skorecki KL, Magen D (2008) Stem cells in renal biology and medicine. In: Brenner BM (ed) Brenner and Rector’s the kidney, 8th edn. Sauders Elsevier, Philadelphia, pp 2215–2241

    Google Scholar 

  9. Krane LS, Atala A (2012) Tissue engineering, stem cells, and cell therapy in nephrology. In: Taal MW, Chertow GM, Marsden PA, Skorechi K, Yu AS, Brenner BM (eds) Brenner and Rector’s the kidney, 9th edn. Sauders Elsevier, Philadelphia, pp 2851–2868

    Google Scholar 

  10. Walker MR, Patel KK, Stappenbeck TS (2009) The stem cell niche. J Pathol 217(2):169–180

    Article  PubMed  CAS  Google Scholar 

  11. Hopkins C, Li J, Rae F, Little MH (2009) Stem cell options for kidney disease. J Pathol 217(2):265–281

    Article  PubMed  CAS  Google Scholar 

  12. Guo JK, Cantley LG (2010) Cellular maintenance and repair of the kidney. Annu Rev Physiol 72:357–376

    Article  PubMed  CAS  Google Scholar 

  13. Ralib A, Pickering JW, Shaw GM, et al (2012) Test characteristics of urinary biomarkers depend on quantitation method in acute kidney injury. J Am Soc Nephrol 23(2):322–333

  14. Waikar SS, Betensky RA, Emerson SC, Bonventre JV (2012) Imperfect gold standards for kidney injury biomarker evaluation. J Am Soc Nephrol 23(1):13–21

  15. Boyle S, Shioda T, Perantoni AO, de Caestecker M (2007) Cited1 and Cited2 are differentially expressed in the developing kidney but are not required for nephrogenesis. Dev Dyn 236(8):2321–2330

    Article  PubMed  CAS  Google Scholar 

  16. Lazzeri E, Crescioli C, Ronconi E et al (2007) Regenerative potential of embryonic renal multipotent progenitors in acute renal failure. J Am Soc Nephrol 18(12):3128–3138

    Article  PubMed  CAS  Google Scholar 

  17. Sagrinati C, Netti GS, Mazzinghi B et al (2006) Isolation and characterization of multipotent progenitor cells from the Bowman’s capsule of adult human kidneys. J Am Soc Nephrol 17(9):2443–2456

    Article  PubMed  CAS  Google Scholar 

  18. Ivanova L, Hiatt MJ, Yoder MC, Tarantal AF, Matsell DG (2010) Ontogeny of CD24 in the human kidney. Kidney Int 77(12):1123–1131

    Article  PubMed  CAS  Google Scholar 

  19. Mizrak D, Brittan M, Alison MR (2008) CD133: molecule of the moment. J Pathol 214(1):3–9

    Article  PubMed  CAS  Google Scholar 

  20. Angelotti ML, Lazzeri E, Lasagni L, Romagnani P (2010) Only anti-CD133 antibodies recognizing the CD133/1 or the CD133/2 epitopes can identify human renal progenitors. Kidney Int. 78(6):620–621

    Article  PubMed  CAS  Google Scholar 

  21. Kemper K, Sprick MR, de Bree M et al (2010) The AC133 epitope, but not the CD133 protein, is lost upon cancer stem cell differentiation. Cancer Res 70(2):719–729

    Article  PubMed  CAS  Google Scholar 

  22. Zhang PL, Bonventre JV. Proximal and distal tubule epithelial cells express CD133 during repair after acute kidney injury in humans. Annual Meeting of American Nephrology Society 2011; Abstract, #SA-OR346.

  23. Ichimura T, Bonventre JV, Bailly V et al (1998) Kidney injury molecule-1 (KIM-1), a putative epithelial cell adhesion molecule containing a novel immunoglobulin domain, is up-regulated in renal cells after injury. J Biol Chem 273(7):4135–4142

    Article  PubMed  CAS  Google Scholar 

  24. Han WK, Bailly V, Abichandani R, Thadhani R, Bonventre JV (2002) Kidney Injury Molecule-1 (KIM-1): a novel biomarker for human renal proximal tubule injury. Kidney Int 62(1):237–244

    Article  PubMed  CAS  Google Scholar 

  25. Zhang PL, Rothblum LI, Han WK, Blasick TM, Potdar S, Bonventre JV (2008) Kidney injury molecule-1 expression in transplant biopsies is a sensitive measure of cell injury. Kidney Int 73(5):608–614

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  26. Maeshima A, Yamashita S, Nojima Y (2003) Identification of renal progenitor-like tubular cells that participate in the regeneration processes of the kidney. J Am Soc Nephrol 14:3138–3146

    Article  PubMed  Google Scholar 

  27. Gupta S, Verfaillie C, Chmielewski D et al (2006) Isolation and charaterization of kidney-derived stem cells. J Am Soc Nephrol 17:3028–3040

    Article  PubMed  CAS  Google Scholar 

  28. Kitamura S, Yamasaki Y, Kinomura M et al (2005) Establishment and characterization of renal progenitor like cells from S3 segment of nephron in rat adult kidney. FASEB J 19:1789–1797

    Article  PubMed  CAS  Google Scholar 

  29. Dekel B, Zangi L, Shezen E et al (2006) Isolation and characterization of nontubular Sca-1+ Lin- multipotent stem/rpogenitor cells from adult mouse kidney. J Am Soc Nephrol 17:3300–3314

    Article  PubMed  Google Scholar 

  30. Bussolati B, Bruno S, Grange C et al (2005) Isolation of renal progenitor cells from adult human kidney. Am J Pathol 166(2):545–555

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  31. Sagrinati C, Netti GS, Mazzinghi B et al (2006) Isolation and characterization of multipotent progrnitor cells from the Bowman’s Capsule of adult human kidneys. J Am Soc Nephrol 17:2443–2456

    Article  PubMed  CAS  Google Scholar 

  32. Lindgren D, Bostrom A-K, Nilsson K et al (2011) Isolation and chracterization of progenitor-like cells from human renal proximal tubules. Am J Pathol 178(2):828–837

    Article  PubMed  PubMed Central  Google Scholar 

  33. Little MH, Bertram JF (2009) Is there such a thing as a renal stem cell? J Am Soc Nephrol 20:2112–2117

    Article  PubMed  CAS  Google Scholar 

  34. Appel D, Kershaw DB, Smeets B et al (2009) Recruitment of podocytes from glomerular parietal epithelial cells. J Am Soc Nephrol 20(2):333–343

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  35. Romagnani P (2011) Family portrait: renal progenitor of Bowman’s capsule and its tubular brothers. Am J Pathol 178(2):490–493

    Article  PubMed  PubMed Central  Google Scholar 

  36. Poulsom R, Forbes SJ, Hodivala-Dilke K et al (2001) Bone marrow contributes to renal parenchymal turnover and regeneration. J Pathol 195(2):229–235

    Article  PubMed  CAS  Google Scholar 

  37. Imasawa T, Nagasawa R, Utsunomiya Y et al (1999) Bone marrow transplantation attenuates murine IgA nephropathy: role of a stem cell disorder. Kidney Int 56(5):1809–1817

    Article  PubMed  CAS  Google Scholar 

  38. Gupta S, Verfaillie C, Chmielewski D et al (2006) Isolation and characterization of kidney-derived stem cells. J Am Soc Nephrol 17(11):3028–3040

    Article  PubMed  CAS  Google Scholar 

  39. Oliver JA, Klinakis A, Cheema FH et al (2009) Proliferation and migration of label-retaining cells of the kidney papilla. J Am Soc Nephrol 20(11):2315–2327

    Article  PubMed  PubMed Central  Google Scholar 

  40. Oliver JA, Maarouf O, Cheema FH, Martens TP, Al-Awqati Q (2004) The renal papilla is a niche for adult kidney stem cells. J Clin Invest 114(6):795–804

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  41. Maeshima A, Yamashita S, Nojima Y (2003) Identification of renal progenitor-like tubular cells that participate in the regeneration processes of the kidney. J Am Soc Nephrol 14(12):3138–3146

    Article  PubMed  Google Scholar 

  42. Maeshima A, Sakurai H, Nigam SK (2006) Adult kidney tubular cell population showing phenotypic plasticity, tubulogenic capacity, and integration capability into developing kidney. J Am Soc Nephrol 17(1):188–198

    Article  PubMed  CAS  Google Scholar 

  43. Dekel B, Metsuyanim S, Schmidt-Ott KM et al (2006) Multiple imprinted and stemness genes provide a link between normal and tumor progenitor cells of the developing human kidney. Cancer Res 66(12):6040–6049

    Article  PubMed  CAS  Google Scholar 

  44. Dekel B, Zangi L, Shezen E et al (2006) Isolation and characterization of nontubular sca-1+ lin- multipotent stem/progenitor cells from adult mouse kidney. J Am Soc Nephrol 17(12):3300–3314

    Article  PubMed  Google Scholar 

  45. Humphreys BD, Czerniak S, DiRocco DP, Hasnain W, Cheema R, Bonventre JV (2011) Repair of injured proximal tubule does not involve specialized progenitors. Proc Natl Acad Sci USA 108(22):9226–9231

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  46. Humphreys BD, Valerius MT, Kobayashi A et al (2008) Intrinsic epithelial cells repair the kidney after injury. Cell Stem Cell 2(3):284–291

    Article  PubMed  CAS  Google Scholar 

  47. Kusaba T, Lalli M, Kramann R, Kobayashi A, Humphreys BD. Differentiated kidney epithelial cells repair injured proximal tubule. Proc Natl Acad Sci USA. 2013.

  48. Smeets B, Angelotti ML, Rizzo P et al (2009) Renal progenitor cells contribute to hyperplastic lesions of podocytopathies and crescentic glomerulonephritis. J Am Soc Nephrol 20(12):2593–2603

    Article  PubMed  PubMed Central  Google Scholar 

  49. Lasagni L, Romagnani P (2010) Glomerular epithelial stem cells: the good, the bad, and the ugly. J Am Soc Nephrol 21(10):1612–1619

    Article  PubMed  Google Scholar 

  50. Loverre A, Capobianco C, Ditonno P, Battaglia M, Grandaliano G, Schena FP (2008) Increase of proliferating renal progenitor cells in acute tubular necrosis underlying delayed graft function. Transplantation 85(8):1112–1119

    Article  PubMed  Google Scholar 

  51. Kim K, Park BH, Ihm H et al (2011) Expression of stem cell marker CD133 in fetal and adult human kidneys and pauci-immune crescentic glomerulonephritis. Histol Histopathol 26(2):223–232

    PubMed  Google Scholar 

  52. Schwartz JD, Dumler F, Hafron JM, et al. CD133 staining detects acute kidney injury and differentiates clear cell papillary renal cell carcinoma from other renal tumors. ISRN Biomark. 2013;353598: 8 p

  53. Angelotti ML, Ronconi E, Ballerini L et al (2012) Characterization of renal progenitors committed toward tubular lineage and their regenerative potential in renal tubular injury. Stem Cells 30(8):1714–1725

    Article  PubMed  CAS  Google Scholar 

  54. Lin F, Moran A, Igarashi P (2005) Intrarenal cells, not bone marrow-derived cells, are the major source for regeneration in postischemic kidney. J Clin Invest 115(7):1756–1764

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  55. Lin F, Cordes K, Li L et al (2003) Hematopoietic stem cells contribute to the regeneration of renal tubules after renal ischemia-reperfusion injury in mice. J Am Soc Nephrol 14(5):1188–1199

    Article  PubMed  Google Scholar 

  56. Kiel MJ, He S, Ashkenazi R et al (2007) Haematopoietic stem cells do not asymmetrically segregate chromosomes or retain BrdU. Nature 449(7159):238–242

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  57. Duffield JS, Bonventre JV (2005) Kidney tubular epithelium is restored without replacement with bone marrow-derived cells during repair after ischemic injury. Kidney Int 68(5):1956–1961

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  58. Duffield JS, Park KM, Hsiao LL et al (2005) Restoration of tubular epithelial cells during repair of the postischemic kidney occurs independently of bone marrow-derived stem cells. J Clin Invest 115(7):1743–1755

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  59. Iwano M, Plieth D, Danoff TM, Xue C, Okada H, Neilson EG (2002) Evidence that fibroblasts derive from epithelium during tissue fibrosis. J Clin Invest 110(3):341–350

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  60. Kalluri R, Neilson EG (2003) Epithelial-mesenchymal transition and its implications for fibrosis. J Clin Invest 112(12):1776–1784

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  61. Liu Y (2004) Epithelial to mesenchymal transition in renal fibrogenesis: pathologic significance, molecular mechanism, and therapeutic intervention. J Am Soc Nephrol 15(1):1–12

    Article  PubMed  CAS  Google Scholar 

  62. Yamashita S, Maeshima A, Nojima Y (2005) Involvement of renal progenitor tubular cells in epithelial-to-mesenchymal transition in fibrotic rat kidneys. J Am Soc Nephrol 16(7):2044–2051

    Article  PubMed  CAS  Google Scholar 

  63. Humphreys BD, Lin SL, Kobayashi A et al (2010) Fate tracing reveals the pericyte and not epithelial origin of myofibroblasts in kidney fibrosis. Am J Pathol 176(1):85–97

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  64. Yang L, Besschetnova TY, Brooks CR, Shah JV, Bonventre JV (2010) Epithelial cell cycle arrest in G2/M mediates kidney fibrosis after injury. Nat Med. 16(5):535–543 531p following 143

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  65. Yang L, Humphreys BD, Bonventre JV (2011) Pathophysiology of acute kidney injury to chronic kidney disease: maladaptive repair. Contrib Nephrol 174:149–155

    Article  PubMed  Google Scholar 

  66. Brennan JF, Stilmant MM, Babayan RK, Siroky MB (1991) Acquired renal cystic disease: implications for the urologist. Br J Urol 67(4):342–348

    Article  PubMed  CAS  Google Scholar 

  67. Denton MD, Magee CC, Ovuworie C et al (2002) Prevalence of renal cell carcinoma in patients with ESRD pre-transplantation: a pathologic analysis. Kidney Int 61(6):2201–2209

    Article  PubMed  Google Scholar 

  68. Petrolla AA, Maclennan GT (2006) Renal cell carcinoma associated with end stage renal disease. J Urol 176(1):345

    Article  PubMed  Google Scholar 

  69. Kojima Y, Takahara S, Miyake O, Nonomura N, Morimoto A, Mori H (2006) Renal cell carcinoma in dialysis patients: a single center experience. Int J Urol 13(8):1045–1048

    Article  PubMed  Google Scholar 

  70. Neuzillet Y, Lay F, Luccioni A et al (2005) De novo renal cell carcinoma of native kidney in renal transplant recipients. Cancer 103(2):251–257

    Article  PubMed  Google Scholar 

  71. Tickoo SK, dePeralta-Venturina MN, Harik LR et al (2006) Spectrum of epithelial neoplasms in end-stage renal disease: an experience from 66 tumor-bearing kidneys with emphasis on histologic patterns distinct from those in sporadic adult renal neoplasia. Am J Surg Pathol 30(2):141–153

    Article  PubMed  Google Scholar 

  72. Bussolati B, Brossa A, Camussi G (2011) Resident stem cells and renal carcinoma. Int J Nephrol. 2011:286985

    PubMed  PubMed Central  Google Scholar 

  73. Mani SA, Guo W, Liao MJ et al (2008) The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 133(4):704–715

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  74. Matson MA, Cohen EP (1990) Acquired cystic kidney disease: occurrence, prevalence, and renal cancers. Med (Baltimore) 69(4):217–226

    Article  CAS  Google Scholar 

  75. Stingl J (2009) Detection and analysis of mammary gland stem cells. J Pathol 217(2):229–241

    Article  PubMed  CAS  Google Scholar 

  76. Clarke MF, Dick JE, Dirks PB et al (2006) Cancer stem cells–perspectives on current status and future directions: AACR Workshop on cancer stem cells. Cancer Res 66(19):9339–9344

    Article  PubMed  CAS  Google Scholar 

  77. Dalerba P, Cho RW, Clarke MF (2007) Cancer stem cells: models and concepts. Annu Rev Med 58:267–284

    Article  PubMed  CAS  Google Scholar 

  78. Dalerba P, Clarke MF (2007) Cancer stem cells and tumor metastasis: first steps into uncharted territory. Cell Stem Cell 1(3):241–242

    Article  PubMed  CAS  Google Scholar 

  79. Bruno S, Bussolati B, Grange C et al (2006) CD133+ renal progenitor cells contribute to tumor angiogenesis. Am J Pathol 169(6):2223–2235

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  80. Bussolati B, Bruno S, Grange C, Ferrando U, Camussi G (2008) Identification of a tumor-initiating stem cell population in human renal carcinomas. FASEB J 22(10):3696–3705

    Article  PubMed  CAS  Google Scholar 

  81. Lee HJ, Kim DI, Kwak C, Ku JH, Moon KC (2008) Expression of CD24 in clear cell renal cell carcinoma and its prognostic significance. Urology 72(3):603–607

    Article  PubMed  Google Scholar 

  82. Galleggiante V, Rutigliano M, Sallustio F, et al. CTR2 identifies a population of cancer cells with stem-like features in patients with clear cell-renal cell carcinoma. J Urol. 2014.

  83. Addla SK, Brown MD, Hart CA, Ramani VA, Clarke NW (2008) Characterization of the Hoechst 33342 side population from normal and malignant human renal epithelial cells. Am J Physiol Renal Physiol 295(3):F680–687

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  84. Hughes C, Liew M, Sachdeva A et al (2010) SR-FTIR spectroscopy of renal epithelial carcinoma side population cells displaying stem cell-like characteristics. Analyst 135(12):3133–3141

    Article  PubMed  CAS  Google Scholar 

  85. Zhong Y, Guan K, Guo S et al (2010) Spheres derived from the human SK-RC-42 renal cell carcinoma cell line are enriched in cancer stem cells. Cancer Lett 299(2):150–160

    Article  PubMed  CAS  Google Scholar 

  86. Gobbo S, Eble JN, Grignon DJ et al (2008) Clear cell papillary renal cell carcinoma: a distinct histopathologic and molecular genetic entity. Am J Surg Pathol 32(8):1239–1245

    Article  PubMed  Google Scholar 

  87. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126(4):663–676

    Article  PubMed  CAS  Google Scholar 

  88. Kim JB, Sebastiano V, Wu G et al (2009) Oct4-induced pluripotency in adult neural stem cells. Cell 136(3):411–419

    Article  PubMed  CAS  Google Scholar 

  89. Obokata H, Sasai Y, Niwa H et al (2014) Bidirectional developmental potential in reprogrammed cells with acquired pluripotency. Nature 505(7485):676–680

    Article  PubMed  CAS  Google Scholar 

Download references

Conflict of interest

The authors declare that they have no conflict of interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ping L. Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, P.L., Hafron, J.M. Progenitor/stem cells in renal regeneration and mass lesions. Int Urol Nephrol 46, 2227–2236 (2014). https://doi.org/10.1007/s11255-014-0821-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11255-014-0821-z

Keywords

Navigation