Skip to main content
Log in

Compensator Design Via the Separation Principle for a Class of Semilinear Evolution Equations

  • Published:
Ukrainian Mathematical Journal Aims and scope

We establish a compensator design via the separation principle in the practical sense for a class of semi-linear evolution equations in Hilbert spaces. Under a restriction imposed on the perturbation, which is bounded by an integrable function, we propose a nonlinear time-varying practical Luenberger observer to estimate the states of the system and prove that the Luenberger observer based on a linear controller stabilizes the system. An illustrative example is given to demonstrate the applicability of our theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Balas, “Towards a (more) practical control theory for distributed parameter systems,” Control and Dynamics Systems: Advances in Theory and Applications, Academic Press, New York (1980).

    Google Scholar 

  2. A. Benabdallah, “A separation principle for the stabilization of a class of time-delay nonlinear systems,” Kybernetika (Prague), 51, 99–111 (2015).

    MathSciNet  MATH  Google Scholar 

  3. A. Benabdallah, I. Ellouze, and M. A. Hammami, “Practical exponential stability of perturbed triangular systems and a separation principle,” Asian J. Control, 13, 445–448 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  4. D. S. Bernstein and D. C. Hyland, “The optimal projection equations for finite-dimensional fixed-order dynamic compensation of infinite-dimensional systems,” SIAM J. Control Optim., 24, 122–151 (1986).

    Article  MathSciNet  MATH  Google Scholar 

  5. P. D. Christofides, Nonlinear and Robust Control of PDE Systems: Methods and Applications to Transport-Reaction Processes, Birkhäuser Boston, Inc., Boston, MA (2001).

    Book  MATH  Google Scholar 

  6. R. F. Curtain, “Compensators for infinite dimensional linear systems,” J. Franklin Inst., 315, 331–346 (1983).

    Article  MathSciNet  MATH  Google Scholar 

  7. R. F. Curtain, “Finite-dimensional compensators for parabolic distributed systems with unbounded control and observation,” SIAM J. Control Optim., 22, 225–276 (1984).

    Article  MathSciNet  MATH  Google Scholar 

  8. R. F. Curtain, “A comparison of finite-dimensional controller designs for distributed parameter systems,” Control Theory Technol., 9, 609–628 (1993).

    MathSciNet  Google Scholar 

  9. R. F. Curtain, “Stabilization of boundary control distributed systems via integral dynamic output feedback of a finite-dimensional compensator,” Analysis and Optimization of Systems (Versailles, 1982), Lect. Notes Control Inf. Sci., 44, Springer, Berlin (1982), pp. 761–776.

  10. R. F. Curtain and D. Salamon, “Finite-dimensional compensators for infinite-dimensional systems with unbounded input operators,” SIAM J. Control Optim., 24, 797–816 (1986).

  11. R. F. Curtain and H. J. Zwart, An Introduction to Infinite Dimensional Linear Systems Theory, Springer-Verlag, New York (1995).

    Book  MATH  Google Scholar 

  12. H. Damak and M. A. Hammami, “Stabilization and practical asymptotic stability of abstract differential equations,” Numer. Funct. Anal. Optim., 37, 1235–1247 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  13. H. Damak, I. Ellouze, and M. A. Hammami, “A separation principle of a class of time-varying nonlinear systems,” Nonlinear Dyn. Syst. Theory, 13, 133–143 (2013).

    MATH  Google Scholar 

  14. R. Datko, “Extending a theorem of A. M. Liapunov to Hilbert spaces,” J. Math. Anal. Appl., 32, 610–616 (1970).

    Article  MathSciNet  MATH  Google Scholar 

  15. I. Ellouze, “On the practical separation principle of time-varying perturbed systems,” IMA J. Math. Control Inform., 37, No. 1, 1–16 (2019).

    MathSciNet  Google Scholar 

  16. I. Ellouze and M. A. Hammami, “A separation principle of time-varying dynamical systems: a practical stability approach,” Math. Model. Anal., 12, 297–308 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  17. R. Gressang and G. Lamont, “Observers for systems characterized by semigroups,” IEEE Trans. Automat. Control, AC-20, 523–528 (1975).

  18. W. Harmon Ray, Advanced Process Control, McGraw-Hill, New York (1981).

  19. W. He, S. S. Ge, B. V. Ee How, and Y. S. Choo, Dynamics and Control of Mechanical Systems in Offshore Engineering, Springer-Verlag, London (2014).

  20. S. Kitamura, H. Sakairi, and M. Mishimura, “Observers for disturbuted parameter systems,” Electric. Eng. Jap., 92, 142–149 (1972).

    Article  Google Scholar 

  21. A. Loria and E. Panteley, “A separation principle for a class of Euler–Lagrange systems,” New directions in nonlinear observer design (Geiranger Fjord, 1999), Lect. Notes Control Inf. Sci., vol. 244, Springer, London (1999).

  22. Y. Orlov, Y. Lou, and P. D. Christofides, “Robust stabilization of infinite-dimensional systems using sliding-mode output feedback control,” Internat. J. Control, 77, 1115–1136 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  23. A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, New York (1983).

    Book  MATH  Google Scholar 

  24. Y. Qiang, J. W. Wang, and C. Y. Sun, “Observer-based output feedback compensator design for linear parabolic PDEs with local piecewise control and pointwise observation in space,” IET Control Theory Appl., 12, No. 13, 1812–1821 (2018).

    Article  MathSciNet  Google Scholar 

  25. Y. Sakawa and T. Matsushita, “Feedback stabilization for a class of distributed systems and construction of a state estimator,” IEEE Trans. Automat. Control, AC-20, 748–753 (1975).

  26. G. Teschl, Ordinary Differential Equations and Dynamical Systems, Graduate Studies in Mathematics, American Mathematical Society, Providence, RI (2012).

  27. B. Zhou, “Stability analysis of nonlinear time-varying systems by Lyapunov functions with indefinite derivatives,” IET Control Theory Appl., 11, 1434–1442 (2017).

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Damak.

Additional information

Published in Ukrains’kyi Matematychnyi Zhurnal, Vol. 74, No. 8, pp. 1073–1085, August, 2022. Ukrainian DOI:https://doi.org/10.37863/umzh.v74i8.6152.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Damak, H. Compensator Design Via the Separation Principle for a Class of Semilinear Evolution Equations. Ukr Math J 74, 1225–1239 (2023). https://doi.org/10.1007/s11253-023-02131-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11253-023-02131-8

Navigation