Skip to main content
Log in

Two-Dimensional Surfaces in 3-Dimensional and 4-Dimensional Euclidean Spaces. Results and Unsolved Problems

  • Published:
Ukrainian Mathematical Journal Aims and scope

We present a survey of the results obtained for 2-dimensional surfaces in E3 and E4 and connected with the Gaussian curvature and Gaussian torsion. In this connection, we consider the Monge–Ampére equations, obtain the generalizations of Bernstein’s integral formula, and establish lower estimates for the outer diameter of the surfaces in E3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. N. V. Efimov, “Surfaces with slowly varying negative curvature,” Usp. Mat. Nauk, 21, No. 5, 3–58 (1966).

    MathSciNet  Google Scholar 

  2. N. V. Efimov, “Differential criteria of homeomorphism of some mappings with application to the theory of surfaces,” Mat. Sb., 76, 499–512 (1968).

    MathSciNet  Google Scholar 

  3. É. R. Rozendorn, “Weakly irregular surfaces of negative curvature,” Usp. Mat. Nauk, 21, No. 5, 59–116 (1968).

    MathSciNet  MATH  Google Scholar 

  4. É. G. Poznyak, “Isometric immersions of two-dimensional Riemannian metrics in Euclidean spaces,” Usp. Mat. Nauk, 28, No. 4, 47–76 (1973).

    MathSciNet  MATH  Google Scholar 

  5. Ya. G. Perel’man, “Example of a complete saddle surface in R 4 with Gaussian curvature separated from zero,” Ukr. Geom. Sb., 32, 99–102 (1989).

    MATH  Google Scholar 

  6. D. Blanuša, “Über die Einbettung hyperbolischer Räume in Euklidische Räume,” Monatsh. Math., 59, No. 3, 217–229 (1955).

    Article  MathSciNet  MATH  Google Scholar 

  7. É. R. Rozendorn, “Realization of the metric ds 2 = du 2 + f 2(u) 2 in a 5-dimensional Euclidean space,” Dokl. Akad. Nauk Arm. SSR, 30, No. 4, 197–199 (1960).

    Google Scholar 

  8. I. Kh. Sabitov, “On the isometric immersions of the Lobachevskii plane in E 4 ,Sib. Mat. Zh., 30, No 5, 179–186 (1989).

    MathSciNet  Google Scholar 

  9. N. V. Efimov, “Investigation of a complete surface of negative curvature,” Dokl. Akad. Nauk SSSR, 93, No. 3, 393–395 (1953).

    MathSciNet  Google Scholar 

  10. N. V. Efimov, “Investigation of a single-valued projection of a surface of negative curvature,” Dokl. Akad. Nauk SSSR, 93, No. 4, 609–611 (1953).

    MathSciNet  Google Scholar 

  11. E. Heinz, “Über Flächen eineindeutiger Projection auf Ebene, deren Krümungen durch Ungleichungen eingeschrenkt sind,” Math. Ann., 129, No. 5, 451–454 (1955).

    Article  MathSciNet  Google Scholar 

  12. Yu. A. Aminov, “On the outer diameter of a surface with negative curvature,” Ukr. Geom. Sb., 13, 3–9 (1973).

    Google Scholar 

  13. Yu. A. Aminov, “On the two-dimensional metrics with negative curvature,” Ukr. Geom. Sb., 13, 9–15 (1973).

    MathSciNet  Google Scholar 

  14. Yu. A. Aminov, “On the estimates of diameter and volume for a submanifold in Euclidean space,” Ukr. Geom. Sb., 18, 3–15 (1975).

    Google Scholar 

  15. Yu. A. Aminov, “Surfaces in E 4 with Gaussian curvature that coincides with Gaussian torsion to within the sign,” Mat. Zametki, 56, No. 6, 3–9 (1994).

    Google Scholar 

  16. Yu. A. Aminov, “On the surfaces in E 4 with Gaussian torsion of constant sign,” Ukr. Geom. Sb., 31, 3–14 (1988).

    MATH  Google Scholar 

  17. Yu. A. Aminov and V. A. Gor’kavyi, “On the Gaussian curvature of the surfaces in E 3 and E 4 ,Mat. Fiz., Anal., Geom. Khar’kov. Mat. Zh., 8, Issue 1, 3–16 (2001).

  18. Yu. D. Burago, “Inequalities of isoperimetric type in the theory of surfaces of bounded extrinsic curvature,” Zap. Nauch. Sem. LOMI, 10 (1968).

  19. K. Jörgens, “Über die Lösungen der Differential gleischung rt − s 2 = 1,Math. Ann., 127, No. 1, 180–184 (1954).

    Article  Google Scholar 

  20. Yu. Aminov, K. Arslan, B. Bayram, B. Bulca, C. Murathan, and G. Öztürk, “On the solution of the Monge–Ampére equation \( {Z}_{xx}{Z}_{yy}-{Z}_{xy}^2=f\left(x,y\right) \) with quadratic right side,” J. Mat. Fiz., Anal., Geom., 7, No. 3, 203–211 (2011).

    MATH  Google Scholar 

  21. I. Kh. Sabitov, Isometric Immersions and Embeddings of Locally Euclidean Metrics, Cambridge Sci. Publ., Cambridge (2009)

    MATH  Google Scholar 

  22. Yu. A. Aminov, “On the Monge–Ampére equation in a polynomial domain,” Dokl. Akad. Nauk, 451, No. 4, 367–368 (2013).

    MathSciNet  MATH  Google Scholar 

  23. Yu. A. Aminov, “On polynomial solutions of the Monge–Ampére equation,” Mat. Sb., 205, No. 11, 3–38 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  24. I. Kh. Sabitov, “Solutions of the trivial Monge–Ampére equation with isolated singular points,” Sib. Élektron. Mat. Izv., 13, 740–743 (2016).

    MathSciNet  MATH  Google Scholar 

  25. I. Kh. Sabitov, “Global solutions of the trivial Monge–Ampére equation with isolated singularities,” in: Abstr. of the Internat. Conf. “Geometry in Odessa-2015, May 25–31” (2015), p. 86.

  26. J. A. Gálvez and B. Nelli, “Entire solutions of the degenerate Monge–Ampére equation with a finite number of singularities,” J. Different. Equat., 261, 6614–6631 (2016).

    Article  MATH  Google Scholar 

  27. Yu. D. Burago, “Geometry of surfaces in Euclidean spaces,” in: VINITI Series in Contemporary Problems of Mathematics [in Russian], Vol. 48, VINITI, Moscow (1989), pp. 5–97.

  28. É. R. Rozendorn, “Surfaces of negative curvature,” in: VINITI Series in Contemporary Problems of Mathematics [in Russian], Vol. 48, VINITI, Moscow (1989), pp. 98–195.

  29. S. B. Kadomtsev, “Impossibility of some special immersions of the Lobachevskii space,” Mat. Sb., 107, No. 2, 175–198 (1978).

    MathSciNet  Google Scholar 

  30. Yu. A. Aminov, “Isometric immersion of domains of a three-dimensional Lobachevskii space into a five-dimensional Euclidean space and the motion of a solid,” Mat. Sb., 122, No. 1, 12–30 (1983).

    MathSciNet  MATH  Google Scholar 

  31. Yu. A. Aminov, “Geometry of the Grassmann image of a locally isometric immersion of an n-dimensional Lobachevskii space into a (2n − 1)-dimensional Euclidean space,” Mat. Sb., 188, No. 1, 3–28 (1997).

    Article  MathSciNet  Google Scholar 

  32. F. Xavier, “A non-immersion theorem for hyperbolic manifolds,” Comment. Math. Helv., 60, 280–285 (1985).

    Article  MathSciNet  MATH  Google Scholar 

  33. L. A. Masal’tsev, “On the minimal submanifolds of constant curvature in Euclidean spaces,” Izv. Vyssh. Uchebn. Zaved., Ser. Mat., 9, 61–65 (1998).

    MathSciNet  MATH  Google Scholar 

  34. Y. A. Nikolajevsky, “A non-immersion theorem for a class of hyperbolic manifolds,” Different. Geom. Appl., 9, No. 3, 239–242 (1998).

    Article  MathSciNet  Google Scholar 

  35. D. V. Bolotov, “On the isometric immersion with plane normal connectedness of the Lobachevskii space L n into the Euclidean space E n+m ,Mat. Zametki, 82, No. 1, 11–13 (2007).

    Article  MathSciNet  Google Scholar 

  36. N. V. Efimov, “Appearance of singularities on the surfaces of negative curvature,” Mat. Sb., 64, No. 2, 286–320 (1964).

    MathSciNet  Google Scholar 

  37. T. Klotz-Milnor, “Efimov’s theorem about complete immersed surfaces of negative curvature,” Usp. Mat. Nauk, 41, No. 5, 3–57 (1986).

    MathSciNet  MATH  Google Scholar 

  38. V. A. Aleksandrov, “On the differential criterion of homeomorphism of the mapping obtained by N. V. Efimov,” Sovr. Probl. Mat., 6, No. 2, 18–26 (2011).

    Google Scholar 

  39. É. R. Rozendorn and E. V. Shikin, “N. V. Efimov’s works on the surfaces with negative curvature,” Sovr. Probl. Mat., 6, No. 2, 49–56 (2011).

    Google Scholar 

  40. S. S. Chern, “On the curvatura integra in a Riemannian manifold,” Ann. Math., 46, No. 4, 674–684 (1945).

    Article  MathSciNet  MATH  Google Scholar 

  41. Yu. A. Aminov, Geometry of Submanifolds [in Russian], Naukova Dumka, Kiev (2002).

    Google Scholar 

  42. A. A. Borisenko, “Isometric immersions of space forms into Riemannian and pseudo-Riemannian spaces of constant curvature,” Usp. Mat. Nauk, 56, No. 3, 3–78 (2001).

    Article  MATH  Google Scholar 

  43. A. A. Borisenko, Intrinsic and Extrinsic Geometry of Submanifolds [in Russian], Ékzamen, Moscow (2003).

    Google Scholar 

  44. B. E. Kantor, “On the problem of normal image of a complete surface of negative curvature,” Mat. Sb., 82, No. 2, 220–223 (1970).

    MathSciNet  Google Scholar 

  45. S. N. Bernstein, “Investigation and integration of the second-order partial differential equations of the elliptic type,” Soobshch. Khar’kov. Mat. Obshch., Vtor. Ser., 11, 1–164 (1908–1909).

  46. I. Kh. Sabitov, “Moscow Mathematical Society and metric geometry: from Peterson to contemporary research,” Tr. Mosk. Obshch., 77, No 2, 185–218 (2016).

    MATH  Google Scholar 

  47. N. H. Kuiper, “On C 1-isometric embeddings, I, II,” Nederl. Acad. Wetensch. Proc. Ser. A, 58 -Indag. Math., 17, 545–556, 683–689 (1955).

  48. V. A. Toponogov, “Uniqueness theorem for a surface whose principal curvatures are connected by the relation (1−k 1 d)(1−k 2 d) = 1,Sib. Mat. Zh., 34, No. 4, 197–199 (1993).

    Article  MathSciNet  Google Scholar 

  49. V. A. Toponogov, “On the conditions of existence of umbilical points on a convex surface,” Sib. Mat. Zh., 36, No. 4, 903–910 (1995).

    Article  MathSciNet  Google Scholar 

  50. V. A. Toponogov, “Uniqueness theorem for convex surfaces without umbilical points whose principal curvatures are connected by a certain relationship,” Sib. Mat. Zh., 37, No. 5, 1176–1180 (1996).

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. A. Aminov.

Additional information

Translated from Ukrains’kyi Matematychnyi Zhurnal, Vol. 71, No. 1, pp. 3–36, January, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aminov, Y.A. Two-Dimensional Surfaces in 3-Dimensional and 4-Dimensional Euclidean Spaces. Results and Unsolved Problems. Ukr Math J 71, 1–38 (2019). https://doi.org/10.1007/s11253-019-01622-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11253-019-01622-x

Navigation