Skip to main content
Log in

Property of Mixing of Continuous Classical Systems with Strong Superstable Interactions

  • Published:
Ukrainian Mathematical Journal Aims and scope

We consider an infinite system of point particles in \( {\mathrm{\mathbb{R}}}^d \) interacting via a strong superstable two-body potential ϕ of finite range with radius R. In the language of correlation functions, we obtain a simple proof of the decay of correlations between two clusters (groups of variables) in the case where the distance between these clusters is larger than the radius of interaction. The established result is true for sufficiently small values of the activity of particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. I. P. Kornfel’d, Ya. G. Sinai, and S. V. Fomin, Ergodic Theory [in Russian], Nauka, Moscow (1980).

  2. K. S. Alexander, “Mixing properties and exponential decay for lattice systems in finite volumes,” Ann. Probab., 32, No. 1A, 441–487 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  3. R. C. Bradley, “Basic properties of strong mixing conditions. A survey and some open questions,” Probab. Surv., 2, 107–144 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  4. R. L. Dobrushin, “Description of a random field with the help of conditional probabilities and conditions of its regularity,” Teor. Veroyatn. Ee Primen., 13, Issue 2, 201–229 (1968).

    MATH  Google Scholar 

  5. D. Conache, A. Daletskii, Yu. Kondratiev, and T. Pasurek, Gibbs Measures on Marked Configuration Spaces: Existence and Uniqueness, Preprint arXiv 1503.06349v2 (2015).

  6. J. L. Lebowitz, “Bounds on the correlations and analyticity properties of ferromagnetic Ising spin systems,” Comm. Math. Phys., 28, 313–321 (1972).

    Article  MathSciNet  Google Scholar 

  7. M. Duneau, D. Iagolnitzer, and B. Souillard, “Decrease properties of truncated correlation functions and analyticity properties for classical statistical mechanics,” Comm. Math. Phys., 31, 191–208 (1973).

    Article  MathSciNet  MATH  Google Scholar 

  8. D. Iagolnitzer and B. Souillard, “On the analyticity in the potential in classical statistical mechanics,” Comm. Math. Phys., 60, 131–152 (1978).

    Article  MathSciNet  Google Scholar 

  9. R. A. Minlos, Introduction to Mathematical Statistical Physics, American Mathematical Society, Providence, RI (1999).

  10. A. L. Rebenko, “Cell gas model of classical statistical systems,” Rev. Math. Phys., 25, No. 4, 1–28 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  11. A. L. Rebenko and M. V. Tertychnyi, “Quasicontinuous approximation of statistical systems with strong superstable interactions,” in: Proc. of the Institute of Mathematics, Ukrainian National Academy of Sciences, 4, No. 3 (2007), pp. 172–182.

  12. A. L. Rebenko and M. V. Tertychnyi, “Quasi-lattice approximation of statistical systems with strong superstable interactions. Correlation functions,” J. Math. Phys., 50, No. 3, 1–16 (2009).

    Article  MATH  Google Scholar 

  13. S. M. Petrenko, O. L. Rebenko, and M. V. Tertychnyi, “Quasicontinuous approximation in classical statistical mechanics,” Ukr. Mat. Zh., 63, No. 3, 369–384 (2011); English translation: Ukr. Math. J., 63, No. 3, 425–442 (2011).

  14. A. L. Rebenko and M. V. Tertychnyi, “On the stability, superstability and strong superstability of classical systems of statistical mechanics,” Meth. Funct. Anal. Topol., 14, No. 3, 287–296 (2008).

    MathSciNet  MATH  Google Scholar 

  15. Yu. G. Kondratiev and T. Kuna, “Harmonic analysis on configuration spaces. I. General theory,” Infin. Dimens. Anal. Quantum. Probal. Relat. Top., 5, No. 2, 201–233 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  16. A. Lenard, “States of classical statistical mechanical systems of infinitely many particles. I,” Arch. Ration. Mech. Anal., 59, 219–239 (1975).

    MathSciNet  Google Scholar 

  17. A. Lenard, “States of classical statistical mechanical systems of infinitely many particles. II,” Arch. Ration. Mech. Anal., 59, 241–256 (1975).

    Google Scholar 

  18. R. L. Dobrushin, Ya. G. Sinai, and Yu. M. Sukhov, “Dynamical systems of statistical mechanics,” in: VINITI Series on Contemporary Problems in Mathematics. Fundamental Trends [in Russian], Vol. 2, VINITI, Moscow (1985), pp. 235–284.

  19. R. A. Minlos, “Lectures on statistical physics,” Usp. Mat. Nauk, 23, No. 1, 133–190 (1968).

    MathSciNet  MATH  Google Scholar 

  20. K. R. Parthasarathy, Probability Measure on Metric Spaces. Probability and Mathematical Statistics, Academic Press, New York (1967).

    Google Scholar 

  21. O. E. Lanford and D. Ruelle, “Observables at infinity and states with short range correlations in statistical mechanics,” Comm. Math. Phys., 13, No. 3, 194–215 (1969).

    Article  MathSciNet  Google Scholar 

  22. Yu. G. Kondratiev, T. Pasurek, and M. Röckner, “Gibbs measures of continuous systems: an analytic approach,” Rev. Math. Phys., 24, No. 10, 1250026 (2012).

  23. D. Ruelle, Statistical Mechanics. Rigorous Results, Benjamin, New York (1969).

    MATH  Google Scholar 

  24. D. Ya. Petrina, V. I. Gerasimenko, and P. V. Malyshev, Mathematical Foundations of Classical Statistical Mechanics [in Russian], Naukova Dumka, Kiev (1985).

  25. D. Ya. Petrina, V. I. Gerasimenko, and P. V. Malyshev, Mathematical Foundations of Classical Statistical Mechanics. Continuous Systems, Gordon @ Breach Sci. Publ., New York, etc. (1989).

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Ukrains’kyi Matematychnyi Zhurnal, Vol. 69, No. 8, pp. 1084–1095, August, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rebenko, O.L., Tertychnyi, M.V. Property of Mixing of Continuous Classical Systems with Strong Superstable Interactions. Ukr Math J 69, 1262–1274 (2018). https://doi.org/10.1007/s11253-017-1429-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11253-017-1429-0

Navigation