Skip to main content
Log in

Properties of Strong Random Operators Generated by the Arratia Flow

  • Published:
Ukrainian Mathematical Journal Aims and scope

We study the properties of strong random operators T t in L 2(ℝ) used to describe the shifts of functions along an Arratia flow. We prove the formula of change of variables for the Arratia flow. As a consequence of this formula, we establish sufficient conditions for compact sets KL 2(ℝ) under which T t has a continuous modification on K. We also present necessary and sufficient conditions for the convergent sequences in L 2(ℝ) under which the operator T t preserves their convergence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Arratia, Coalescing Brownian Motions on the Line, PhD Thesis, Madison (1979).

  2. T. E. Harris, “Coalescing and noncoalescing stochastic flows in ℝ1 ,Stochast. Process. Appl., 17, 187–210 (1984).

    Article  MathSciNet  MATH  Google Scholar 

  3. A. A. Dorogovtsev, Measure-Valued Processes and Stochastic Flows [in Russian], Institute of Mathematics, Ukrainian National Academy of Sciences, Kiev (2007).

  4. A. A. Dorogovtsev, “Some remarks on a Wiener flow with coalescence,” Ukr. Mat. Zh., 57, No. 10, 1327–1333 (2005); English translation : Ukr. Math. J., 57, No. 10, 1550–1558 (2005).

  5. H. Kunita, Stochastic Flows and Stochastic Differential Equations, Cambridge University Press, Cambridge (1997).

    MATH  Google Scholar 

  6. A. A. Dorogovtsev, “Semigroups of finite-dimensional random projections,” Lith. Math. J., 51, No. 3, 330–341 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  7. I. A. Korenovska, “Random maps and Kolmogorov widths,” Theory Stochast. Process., 20(36), No. 1, 78–83 (2015).

  8. A. A. Dorogovtsev, “Krylov–Veretennikov expansion for coalescing stochastic flows,” Comm. Stochast. Anal., 6, No. 3, 421–435 (2012).

    MathSciNet  MATH  Google Scholar 

  9. A.V. Skorokhod, Random Linear Operators [in Russian], Naukova Dumka, Kiev (1978).

    Google Scholar 

  10. A. A. Dorogovtsev, Stochastic Analysis and Random Mappings in Hilbert Spaces [in Russian], Naukova Dumka, Kiev (1992).

    MATH  Google Scholar 

  11. L. R. G. Fontes, M. Isopi, C. M. Newman, and K. Ravishankar, “The Brownian web,” Proc. Nat. Acad. Sci., 99, 15,888–15,893 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  12. B. Tóth and W. Werner, “The true self-repelling motion,” Probab. Theory Relat. Fields, 111, 375–452 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  13. R. Arratia, “Coalescing Brownian motions and the voter model on ℤ,” Unpublished Partial Manuscript (1981). Available from rarratia@math.usc.edu.

  14. P. R. Halmos, Measure Theory, D. Van Nostrand, New York (1950).

    Book  MATH  Google Scholar 

  15. S. L. Sobolev, Some Applications of Functional Analysis to Mathematical Physics [in Russian], Nauka, Moscow (1988).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Ukrains’kyi Matematychnyi Zhurnal, Vol. 69, No. 2, pp. 157–172, February, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Korenovskaya, Y.A. Properties of Strong Random Operators Generated by the Arratia Flow. Ukr Math J 69, 186–204 (2017). https://doi.org/10.1007/s11253-017-1356-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11253-017-1356-0

Navigation