Skip to main content
Log in

Evaluation of different ratios of neutral detergent-soluble carbohydrate fractions on performance, ingestive behavior, and nitrogen balance in dairy goats

  • Regular Articles
  • Published:
Tropical Animal Health and Production Aims and scope Submit manuscript

Abstract

Cell components soluble in neutral detergent are a diverse group, both compositionally and nutritionally. The present study aimed to evaluate production responses, behavior (eating, ruminating, and idling), and nitrogen balance of dairy goats fed different ratios of neutral detergent-soluble carbohydrate fractions. Five multiparous Alpine does with mean ± SD initial body mass of 49.5 ± 7.9 kg and 60 days of lactation were randomly assigned in a 5 × 5 Latin square design. The treatments were the ratios of starch (starch associated with soluble sugar [StSS]) to neutral detergent-soluble fiber (NDSF) (StSS:NDSF): 0.89, 1.05, 1.24, 1.73, and 2.92. No effect was observed (P > 0.05) of StSS:NDSF on the intakes of neutral detergent fiber (NDF) and NDSC. However, DM intake showed a quadratic behavior (P = 0.049). The ingestive behavior was affected by StSS:NDSF linearly increased (P = 0.002) the feeding efficiency. The increase in StSS:NDSF caused a linear increase in fecal (P = 0.011), urinary (P < 0.001), and milk nitrogen excretion (P = 0.024). The increase in StSS:NDSF affected (P = 0.048) milk yield and net energy lactation (P = 0.036). In conclusion, dairy goats experience reduced dry matter intake and milk yield when subjected to high-NDSC diets, specifically those above 1.24 StSS:NDSF ratio. Elevated NDSC levels in the diets lead to decreased feeding time, whereas rumination remains unaffected. Nitrogen losses in goats increase linearly with high-NDSC diets, and a significant impact on nitrogen balance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

The data supporting this study's findings are available from the corresponding author upon reasonable request.

Code availability

Not applicable.

References

  • Allen, M.S., 2020. Control of feed intake by hepatic oxidation in ruminant animals: integration of homeostasis and homeorhesis. Animal, 14, s55-s64.

    Article  CAS  PubMed  Google Scholar 

  • Allen, M.S., Bradford, B.J., and Oba, M., 2009. The hepatic oxidation theory of the control of feed intake and its application to ruminants. Journal of Animal Science, 87, 3317-3334.

    Article  CAS  PubMed  Google Scholar 

  • AOAC, 1990. Official methods of analysis, 15th Ed, Association of Official Analytical Chemistry, Washington, DC, USA.

    Google Scholar 

  • Aschenbach, J.R., Kristensen, N.B., Donkin, S.S., Hammon, H.M., and Penner, G.B., 2010. Gluconeogenesis in dairy cows: the secret of making sweet milkfrom sour dough. IUBMB Life, 62, 869-877.

    Article  CAS  PubMed  Google Scholar 

  • Baumont, R., Malbert, C.H., and Ruckebusch, Y., 1990. Mechanical stimulation of rumen fill and alimentary behaviour in sheep. Animal Science, 50, 123-128.

    Article  Google Scholar 

  • Cammack, K.M., Austin, K.J., Lamberson, W.R., Conant, G.C., and Cunningham, H.C., 2018. Tiny but mighty: the role of the rumen microbes in livestock production. Journal of Dairy Science, 96, 752-770.

    Google Scholar 

  • Clark, J.H., Klusmeyer, T.H., and Cameron, M.R., 1992. Microbial protein synthesis and flows of nitrogen fractions to the duodenum of dairy cows. Journal of Dairy Science 75, 2304-2323.

    Article  CAS  PubMed  Google Scholar 

  • Colburn, M.W., Evans, J.L., Ramage, C.H., 1968. Apparent and true digestibility of forage nutrients by ruminant animals. Journal of Dairy Science, 9, 1450-1457.

    Article  Google Scholar 

  • Counotte, G.H.M., Prins, R.A., Janssen, R.H.A.M., and Debie, M.J.A., 1981. Role of Megasphaera elsdenii in the fermentation of DL-[2-13C] lactate in the rumen of dairy cattle. Applied and Environmental Microbiology, 42, 649–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Forbes, J.M., and Barrio, J.P., 1992. Abdominal chemo- and mechanosensitivity in ruminants and its role in the control of food intake. Experimental Physiology, 77, 27-50.

    Article  CAS  PubMed  Google Scholar 

  • Friggens, N.C., Nielsen, B.L., Tolkamp, B., Emmans, G.C., and Kyriazakis, I., 1998. Effects of feed composition and stage of lactation on the short-term feeding behavior of dairy cows. Journal of Dairy Science, 88, 3267-3277.

    Google Scholar 

  • Goetsch, A.L., Gipson, T.A., and Askar, A.R., 2010. Feeding behavior of goats. Journal Animal Science 88, 361-373

    Article  CAS  Google Scholar 

  • Gomes, R.S., Oliveira, T.S., Pereira, J.C., Vieira, R.A.M., Henrique, D.S., Fernandes, A.F., and Leonel, F.P., 2016. Performance and metabolite profile of dairy cows fed tropical grasses and concentrates containing crude protein with low or high degradability. Revista Brasileira de Zootecnia, 45, 151-157.

    Article  Google Scholar 

  • Guinguina, A., Yan, T., Bayat, A.R., Lund, P., and Huhtanen, P., 2020. The effects of energy metabolism variables on feed efficiency in respiration chamber studies with lactating dairy cows. Journal of Dairy Science, 9, 7983-7997.

    Article  Google Scholar 

  • Guo, T., Guo, T., Guo, L., Li, F., Li, F., and Ma, Z., 2022. Rumen bacteria abundance and fermentation profile during subacute ruminal acidosis and its modulation by Aspergillus oryzae culture in RUSITEC System. Fermentation, 8, 329-344.

    Article  CAS  Google Scholar 

  • Hackmann, T.J., and Firkins, J.L., 2015. Maximizing efficiency of rumen microbial protein production. Frontiers in Microbiology, 6, 465-481.

    Article  PubMed  PubMed Central  Google Scholar 

  • Haisan, J., and Oba, M., 2020. The effects of feeding a high-fiber or high-starch pellet at two daily allocations on feed intake patterns, rumen fermentation, and milk production of mid-lactation dairy cows. Journal of Dairy Science, 103, 6135-6144.

    Article  CAS  PubMed  Google Scholar 

  • Hall, M.B., Hoover, W.H., Jennings, J.P., and Webster, T.K.M., 1999. A method for partitioning neutral detergent-soluble carbohydrates. Journal of the Science of Food and Agriculture, 79, 2079-2086.

    Article  CAS  Google Scholar 

  • Harmon, D.L., and Swanson, K.C., 2020. Nutritional regulation of intestinal starch and protein assimilation in ruminants. Animal, 14, s17-s28.

    Article  CAS  PubMed  Google Scholar 

  • Kim, J., and Lee, H., 2021. Amino acids supplementation for the milk and milk protein production of dairy cows. Animals, 11, 2118-2129.

    Article  PubMed  PubMed Central  Google Scholar 

  • Leiva, E., Hall, M.B., and Van Horn, H.H., 2000. Performance of dairy cattle fed citrus pulp or corn products as sources of neutral detergent-soluble carbohydrate. Journal of Dairy Science, 83, 2866-2875.

    Article  CAS  PubMed  Google Scholar 

  • Licitra, G., Hernandez, T.M., and Van Soest, P.J., 1996. Standardization of procedures for nitrogen fractionation of ruminant feeds. Anim Feed Science and Technology, 57,

    Article  Google Scholar 

  • Martin, P., and Bateson, P. 1993. Measuring behaviour. 2nd Ed, University Press, Cambridge, UK.

    Book  Google Scholar 

  • Mertens, D.R., 1997. Creating a system for meeting the fiber requirements of dairy cows. Journal of Dairy Science, 80, 1463-1481.

    Article  CAS  PubMed  Google Scholar 

  • Moe, P.W., 1971. Energy metabolism of dairy cattle. Journal of Dairy Science, 64, 1120-1139.

    Article  Google Scholar 

  • NASEM, 2021. Nutrient requirements of dairy cattle. 8th Ed, National Academies of Science, Engineering, and Medicine, The National Academies Press, Washington, USA.

  • Nocek, J.E., and Tamminga, S., 1991. Site of digestion of starch in the gastrointestinal tract of dairy cows and its effect on milk and composition. Journal of Dairy Science, 74, 3598-3629.

    Article  CAS  PubMed  Google Scholar 

  • Polli, V.A., Restle, J., Senna, D.B., Rosa, C.E., Aguirre, L.F., and Silva, J.H.S., 1995. Comportamento de bovinos e bubalinos em regime de confinamento - I. Atividades. Ciência Rural, 25, 127-131.

    Article  Google Scholar 

  • Pulina, G., Cannas, A., Serra, A., and Vallebella, R., 1992. Determinazione e stima del valore energetico di latte di capre di razza Sarda, in Proceedings of the XLV Congress SISVet. Altavilla Milicia, Italy, Grafiche Scuderi, Messina, Italy, pp. 1779–1781.

  • Santos, A.B., Pereira, M.L.A., Silva, H.G.O., Pedreira, M.S., Carvalho, G.G.P., Ribeiro, L.S.O., Almeida, P.J.P., Pereira, T.C.J., and Moreira, J.V., 2014. Nitrogen metabolism in lactating goats fed with diets containing different protein sources. Asian-Australisian Journal of Animal Sciences, 27, 658-666.

    Article  CAS  Google Scholar 

  • Serment, A., and Giger-Reverdin, S., 2012. Effect of the percentage of concentrate on intake pattern in mid-lactation goats. Applied Animal Behaviour Science, 141, 130-138.

    Article  Google Scholar 

  • Slavin, J., 2013. Fiber and prebiotics: Mechanisms and health benefits. Nutrients, 5, 1417-1435.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tebot, I., Cajarville, C., Repetto, J.L., and Cirio, A., 2012. Supplementation with non-fibrous carbohydrates reduced fiber digestibility and did not improve microbial protein synthesis in sheep fed fresh forage of two nutritive values. Animal, 6, 617-623.

    Article  CAS  PubMed  Google Scholar 

  • Ungerfeld, E.M., 2020. Metabolic hydrogen flows in rumen fermentation: principles and possibilities of interventions. Frontiers in Microbiology, 11, 589.

    Article  PubMed  PubMed Central  Google Scholar 

  • Van Soest, P. J. 1994. Nutritional ecology of the ruminant. 2nd Ed, Cornell University Press, Ithaca. 476p.

    Book  Google Scholar 

  • Van Soest, P.J., Robertson, J.B., and Lewis, B.A., 1991. Methods of dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. Journal of Animal Science, 74, 3583-3597.

    Google Scholar 

  • Wei, Z., Xie, X., Xue, M., Valencak, T.G., liu, J., and Sun, H., 2021. The effects of non-fiber carbohydrate content and forage type on rumen microbiome of dairy cows. Animals, 11, 3519-3536.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhou, J., Wang, Y., Wang, L., Tu, J., Yang, L., Yang, G., Zeng, X., and Qiao, S., 2022. Compromised hindgut microbial digestion, rather than chemical digestion in the foregut, leads to decreased nutrient digestibility in pigs fed low-protein diets. Nutrients, 14, 2793-2810.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The author Tadeu Silva de Oliveira thanks the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) for financial support.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: M.A.D. Bomfim and M.T. Rodrigues. Data curation: M.A.D. Bomfim and M.T. Rodrigues. Formal analysis: T.S. Oliveira. Investigation: M.A.D. Bomfim and M.T. Rodrigues. Methodology: M.A.D. Bomfim and M.T. Rodrigues Project administration: M.T. Rodrigues. Supervision: M.T. Rodrigues. Writing-original draft: M.A.D. Bomfim and M.T. Rodrigues, and T.S. Oliveira. Writing-review & editing: T.S. Oliveira.

Corresponding author

Correspondence to Tadeu S. Oliveira.

Ethics declarations

Declarations

Research involving human participants and/or animals

Ethical approval

The Ethics Committee on Animal Use of the Animal Science Department of the Universidade Federal de Viçosa (UFV) approved the experiment, protocol 61/2013.

Consent to participate

All authors agreed to participate in the work herein reported.

Consent for publication

All authors agree on their publication in the work herein reported.

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bomfim, M.A.D., Rodrigues, M. & Oliveira, T.S. Evaluation of different ratios of neutral detergent-soluble carbohydrate fractions on performance, ingestive behavior, and nitrogen balance in dairy goats. Trop Anim Health Prod 56, 159 (2024). https://doi.org/10.1007/s11250-024-04014-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11250-024-04014-x

Keywords

Navigation