Skip to main content

Advertisement

Log in

Effect of slow-release urea on intake, ingestive behavior, digestibility, nitrogen metabolism, microbial protein production, blood and ruminal parameters of sheep

  • Regular Articles
  • Published:
Tropical Animal Health and Production Aims and scope Submit manuscript

Abstract

We conducted two experiments. The first aimed to obtain and characterize microparticles of slow-release urea (SRU) using calcium alginate as the encapsulating agent. The second experiment evaluated their inclusion in sheep diets. In the first experiment, four treatments from a completely randomized design were employed to develop an SRU through the ionic gelification technique testing two drying methods (oven and lyophilizer) and addition or no of sulfur (S): SRU oven-dried with sulfur (MUSO) and without sulfur (MUO), SRU freeze-dried/lyophilized with (MUSL), and without sulfur (MUL). MUO exhibited better yield and encapsulation efficiency among these formulations than the others. Therefore, the second experiment was conducted to compare free urea (U) as control and three proportions (1%, 1.5%, and 2% of total dry matter) of MUO in the diet of sheep. Twenty-four non-castrated male Santa Ines lambs, with an average body weight of 22 ± 3.0 kg, were used and distributed in a completely randomized design with four treatments and six replications. The inclusion of 1% alginate-encapsulated urea (MUO1%) resulted in higher dry matter (DM) intake than free urea (p ≤ 0.05). MUO2% inclusion promoted higher NDF digestibility than U and MUO1%. MUO1% showed higher DM than MUO2% and higher NFC digestibility than U and MUO2% (p ≤ 0.05). Sheep fed MUO1.5% and MUO2% exhibited similar nutrient intake and digestibility. Sheep receiving MUO1% had higher N-intake, N-urinary, N-excretion total, N-digested, and N-retained compared to U. Sheep fed MUO1% showed greater N-retained (as % ingested and digested), microbial protein production, and efficiency when compared to other treatments (p ≤ 0.05). MUO2% addition (SRU) promoted the lowest microbial protein production and efficiency in sheep. MUO dietary inclusion increased feeding time and reduced idleness time compared to U, regardless of the MUO level (p ≤ 0.05). Adding MUO1% improved the intake efficiency of DM and NDF and resulted in more feed boli than the other MUO levels (p ≤ 0.05). Sheep receiving U had (4 h after fending) higher NH3-N, pH, and blood urea nitrogen (BUN) and lower TGL serum compared to sheep fed MUO (p ≤ 0.05), without significant difference among MUO levels (p > 0.05), except NH3-N was higher in MUO1.5% and MUO2% compared to MUO1.0%. The external ionic gelation technique proved suitable for urea microencapsulation in calcium alginate (3%), demonstrating high quality, efficiency, and yield. MUO represents a promising slow-release urea for ruminants and is recommended for sheep diets at an inclusion level of 1.0%. This inclusion level improves intake efficiency and nutrient digestibility, increases rumen nitrogen retention, and reduces BUN without compromising sheep health.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

Not applicable.

Code availability

Not applicable.

References

  • Alves, E. M., Magalhães, D. R., Freitas, M. A., Santos, E. D. J. D., Pereira, M. L. A., Pedreira, M. D. S., 2014. Nitrogen metabolism and microbial synthesis in sheep fed diets containing slow release urea to replace the conventional urea. Acta Scientiarum. Animal Sciences, 36, 55-62. https://doi.org/10.4025/actascianimsci.v36i1.21377

    Article  Google Scholar 

  • AOAC, 2012. Official Methods of Analysis,19th ed. Association of Official Analytical Chemistry, Washington, DC, USA.

    Google Scholar 

  • American Society for Testing and materials - ASTM E2550–17 – Standard test method for thermal stability by thermogravimetry, ASTM International, West Conshohocken, PA, 2017.

  • Barbosa, J. G., Costa, R. G., Medeiros, A. N. de, Queiroga, R. de C. R. do E., Batista, A. M. V., Medeiros, G. R. de, Beltrão Filho, E. M., 2012. Use of different urea levels in the feeding of Alpine goats. Revista Brasileira de Zootecnia, 41(7), 1713-1719https://doi.org/10.1590/S1516-35982012000700022

  • Benedeti, P. D. B., Paulino, P. V. R., Marcondes, M. I., Valadares Filho, S. C., Martins, T. S., Lisboa, E. F., Silva, L. H. P., Teixeira, C. R.V., Duarte, M. S., 2014. Soybean meal replaced by slow-release urea in finishing diets for beef cattle. Livestock Science, 165, 51-60. https://doi.org/10.1016/j.livsci.2014.04.027.

    Article  Google Scholar 

  • Bennacef C., Desobry-Banon, S., Probst, L., Desobry, S., 2021. Advances on alginate use for spherification to encapsulate biomolecules. Food Hydrocolloids, 118, 106782. https://doi.org/10.1016/j.foodhyd.2021.106782

    Article  CAS  Google Scholar 

  • Bennacef, C., Desobry-Banon, S., Probst, L., Desobry, S., 2023 Alginate core-shell capsules production through coextrusion methods: principles and technologies. Marine Drugs, 21(4), 235. https://doi.org/10.3390/md21040235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Campos, A. C., Silva, A. L., Silva, A. M., Filho, J. M. A., Costa, T., Pereira Filho, J. M., Oliveira, J. P., Bezerra, L. R., 2020. Dietary replacement of soybean meal with lipid matrix-encapsulated urea does not modify milk production and composition in dairy goats. Animal Feed Science and Technology, 274, 114763. https://doi.org/10.1016/j.anifeedsci.2020.114763.

    Article  CAS  Google Scholar 

  • Carvalho, A. B., Silva, A. L., Silva, A. M. A., Netto, A. J., Medeiros, T. T. B., Araujo Filho, J. M., Agostini, D. L. S., Oliveira, D. L. V., Mazzetto, S. E., Kotzebue, L. R. V., Oliveira, J. R., Oliveira, R. L., Bezerra, L. R., 2019. Effect of slow-release urea microencapsulated in beeswax and its inclusion in ruminant diets. Small Ruminant Research, 179, 56-63. https://doi.org/10.1016/j.smallrumres.2019.09.005

    Article  Google Scholar 

  • Carvalho Neto, J. P., Bezerra, L.R., da Silva, A.L., Moura, J.F.P., Pereira Filho, J.M., da Silva Filho, E.C., Guedes, A.F., Araújo, M.J., Edvan R. L., Oliveira R. L., 2019. Methionine microencapsulated with a carnauba (Copernicia prunifera) wax matrix for protection from degradation in the rumen. Livestock Science, 228, 53-60. https://doi.org/10.1016/j.livsci.2019.07.024

    Article  Google Scholar 

  • Chan, L.W., Heng, P.W. S., 2002. Effects of aldehydes and methods of cross-linking on properties of calcium alginate microspheres prepared by emulsification. Biomaterials, 23(5), 1319–1326.

    Article  CAS  PubMed  Google Scholar 

  • Chan, L. W., Lee, H. Y., Heng, P. W. S., 2006. Mechanisms of external and internal gelation and their impact on the functions of alginate as a coat and delivery system. Carbohydrate Polymers, 63(2), 176–187.

    Article  CAS  Google Scholar 

  • Chen, X. Bin, Mathieson, J., Hovell, F.D.D., Reeds, P.J., 1990. Measurement of purine derivatives in urine of ruminants using automated methods. Journal of the Science of Food and Agriculture, 53, 23–33. https://doi.org/10.1002/jsfa.2740530104

    Article  CAS  Google Scholar 

  • Chen, X., Gomes, M., 1992. Estimation of Microbial Protein Supply to Sheep and Cattle Based on Urinary Excretion of Purine Derivatives – An Overview of Technical Details. Int. Feed Resource Unit. Rowett Res. Inst.

  • Church, D.C., 1988. El ruminat: fisiología digestiva y nutrición. Zaragoza: Acribia. 641p.

  • Medeiros, T.T.B. de, de Azevedo Silva, A.M., da Silva, A.L., Bezerra, L.R., da Silva Agostini, D.L., de Oliveira, D.L.V., Mazzetto, S.E., Kotzebue, L.R.V., Oliveira, J.R., Souto, G.S.B., de Barros Carvalho, A., Netto, A.J., Oliveira, R.L., 2019. Carnauba wax as a wall material for urea microencapsulation. Journal of the Science of Food and Agriculture, 99, 1078–1087. https://doi.org/10.1002/jsfa.9275

    Article  CAS  PubMed  Google Scholar 

  • Dulphy, J.P., Remond, B., Theriez, M., 1980. Ingestive behaviour and related activities in ruminants. In: Ruckebusch, Y., Thivend, P. (eds) Digestive Physiology and Metabolism in Ruminants. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-8067-2_5

  • Gabriel O. S., Fajemisin, A. N., Onyekachi, D. E., 2018. Nutrients digestibility, nitrogen balance and blood profile of West African Dwarf (Wad) goats fed cassava peels with urea-molasses multi-nutrient block (UMMB) supplements. Asian Research Journal of Agriculture, 9(4), 1-11. https://doi.org/10.9734/ARJA/2018/33770

    Article  Google Scholar 

  • Geron, L. J. V., Aguiar, S. C., Carvalho, J. T. H., Juffo, G. D., Silva, A. P., Neto, E. L. S., Coelho, K. S. M, Garcia, J, Diniz, L. C., Paula, E. J. H., 2016. Effect of slow release urea in sheep feed on intake, nutrient digestibility, and ruminal parameters. Semina Ciencias Agrarias, 37, 2793-2806. https://doi.org/10.5433/1679-0359.2016v37n4Supl1p2793

    Article  CAS  Google Scholar 

  • Goh, C. H., Heng, P. W. S., Chan, L. W., 2012. Alginates as a useful natural polymer for microencapsulation and therapeutic applications. Carbohydrate Polymers, 88, 1-12. https://doi.org/10.1016/j.carbpol.2011.11.012.

    Article  CAS  Google Scholar 

  • Gresner, N., Rodehutscord, M., Südekum, K.-H., 2022. Amino acid pattern of rumen microorganisms in cattle fed mixed diets—An update. Journal of Animal Physiology and Animal Nutrition, 1, 752–771. https://doi.org/10.1111/jpn.13676

    Article  CAS  Google Scholar 

  • Hall, M.B., 2000. Calculation of non-structural carbohydrate content of feeds that contain non-protein nitrogen. Gainesv. Univ. Florida A25–A32.

  • Ibrahim, N.A., Alimon, A.R., Yaakub, H., Samsudin, A.A., Candyrine, S.C.L, Nooraida, W.M.W., Abidah, M.N., Amirul, F.M., Mookiah, S., 2021. Effects of vegetable oil supplementation on rumen fermentation and microbial population in ruminant: a review. Tropical Animal Health and Production, 53, 422. https://doi.org/10.1007/s11250-021-02863-4

    Article  PubMed  Google Scholar 

  • Kaneko, J. J., Harvey, J. W., Bruss, M. L., 2008. Clinical Biochemistry of Domestic Animals.6th ed. Academic Press, San Diego. 916p.

    Google Scholar 

  • Leng, R.A., Nolan, J.V., 1984. Nitrogen metabolism in the rumen. Journal Dairy Science, 67(5), 1072-1089. https://doi.org/10.3168/jds.S0022-0302(84)81409-5

    Article  CAS  Google Scholar 

  • Licitra, G., Hernandes, T.M., Van Soest, P.J., 1996. Standardization of procedures for nitrogen fractionation of ruminant feeds. Animal Feed Science and Technology 57, 347-358. https://doi.org/10.1016/0377-8401(95)00837-3

    Article  Google Scholar 

  • Lu, Z., Xu, Z., Shen, Z., Tian, Y., Shen, H., 2019. Dietary energy level promotes rumen microbial protein synthesis by improving the energy productivity of the ruminal microbiome. Frontiers in Microbiology, 10, 847. https://doi.org/10.3389/fmicb.2019.00847

    Article  PubMed  PubMed Central  Google Scholar 

  • Marini, J. C., Van Amburgh, M. E., 2003. Nitrogen metabolism and recycling in Holstein heifers12. Journal of Animal Science, 81, 545–552. https://doi.org/10.2527/2003.812545x

    Article  CAS  PubMed  Google Scholar 

  • Martin, P., Bateson, P. P. G. Measuring Behaviour: An Introductory Guide. 2nd ed. Cambridge; New York, Cambridge University Press, 1993.

    Book  Google Scholar 

  • Melo, M., da Silva, A., Silva Filho, E., Oliveira, R., Silva Junior, J., Oliveira, J.P., VAZ, A., Moura, J., Pereira Filho, J., Bezerra, L., 2021. Polymeric microparticles of calcium pectinate containing urea for slow release in ruminant diet. Polymers, 13, 3776https://doi.org/10.3390/polym13213776

  • Mertens, D. R., 1997. Creating a system for meeting the fiber requirements of dairy cows. Journal Dairy Science, 80, 1463–1481.

    Article  CAS  Google Scholar 

  • National Research Council (NRC), 2001. Nutrient Requirements of Dairy Cattle. 7th rev. ed. National Academy Press, Washington, DC.

  • National Research Council (NRC), 2007. Nutrient Requirements of Small ruminants: sheep, goats, cervids, and New World Camelids. National Academies Press, Washington, D.C., USA. https://doi.org/10.17226/11654.

  • Netto, A.J., Silva, A.M.D.A., Bezerra, L.R., Carvalho, A.D.B., Agostini, D.L.D.S., de Oliveira, D.L.V., Mazzetto, S.E., Kotzebue, L.R.V., Oliveira, J.R., Oliveira, R.L., 2021. Lipid microspheres containing urea for slow release of non-protein N in ruminant diets. Animal Production Science, 62, 191-200. https://doi.org/10.1071/AN20694

    Article  CAS  Google Scholar 

  • Pacheco, R. F., Machado, D. S., Viana, A. F. P., Teixeira J. S., Milani, L., 2021. Comparison of the effects of slow-release urea vs conventional urea supplementation on some finishing cattle parameters: A meta-analysis. Livestock Science, 250, 104549. https://doi.org/10.1016/j.livsci.2021.104549

    Article  Google Scholar 

  • Ribeiro, S. S., Vasconcelos, J. T., Morais, M. G., Ítavo, C. B. C. F., Franco, G. L., 2011. Effects of ruminal infusion of a slow-release polymer-coated urea or conventional urea on apparent nutrient digestibility, in situ degradability, and rumen parameters in cattle fed low-quality hay. Animal Feed Science and Technology, 164, 53-61. https://doi.org/10.1016/j.anifeedsci.2010.12.003

    Article  CAS  Google Scholar 

  • Santos, D. S. dos, Macedo, A. V. M., Conceição, M. G. da, Siqueira, M. C. B. de, Mora-Luna, R. E., Vasconcelos, E. Q. L. de, Oliveira, J. P. F. de, Monteiro, C. C. de F., Silva, J. de L., Ferreira, M. de A., 2022. Small Ruminant Research 209, 106649. https://doi.org/10.1016/j.smallrumres.2022.106649

  • SAS Institute, 2003. SAS Systems for Windows, Version 9.1, SAS Institute Inc., Cary, NC, USA.

  • Sniffen, C. J., O’connor, D. J., Van Soest, P. J., Fox, D. G., Russell, J. B., 1992. A net carbohydrate and protein system for evaluating cattle diets: carbohydrate and protein availability. J Anim Sci 70, 3562-3577, 1992. https://doi.org/10.2527/1992.70113562x

  • Topps, J.H., Elliott, R.C., 1965. Relationship between concentrations of ruminal nucleic acids and excretion of purine derivatives by sheep. Nature, 205, 498–499. https://doi.org/10.1038/205498b0

    Article  Google Scholar 

  • Van Soest, P.J., 1994. Nutritional ecology of the ruminant. 2nd ed. Ithaca: Cornell University Press, 476p.

    Book  Google Scholar 

  • Van Soest, P.J., Robertson, J.B., Lewis, B.A., 1991. Methods for dietary fiber, neutral detergent fiber, and non starch polyssacharides in relation to animal nutrition. Journal Dairy Science, 74, 3583–3597. https://doi.org/10.3168/jds.S0022-0302(91)78551-2

    Article  Google Scholar 

  • Weiss, W.P., 1999. Energy prediction equations for ruminant feeds. In: Cornell Nutrition Conference Feed Manufactures, tttt Proceedings, Cornell University, Ithaca, pp. 176–185.

  • Wiseman, J., 2018. Editorial: Digestibility and degradability in animal nutrition studies. The Journal Agriculture Science, 156(10), 1161–1162. https://doi.org/10.1017/S0021859619000121

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the Coordination for the Improvement of Higher Education Personnel (CAPES) and the Federal University of Bahia for the facility support.

Funding

The research was financially supported by the National Council for Scientific and Technological Development (Brazil), with grant number 423933/2021–3.

Author information

Authors and Affiliations

Authors

Contributions

AS, LB, and JPF conceived and designed the research. PM and JO supervision and LB funding acquisition. AS, AB, and KL conducted the experiments. RL, AV, and ESF contributed new reagents or analytical tools. AN and EP analyzed the data. AS and wrote the manuscript. All authors read and approved the manuscript.

Corresponding author

Correspondence to Leilson Bezerra.

Ethics declarations

Ethics approval and consent to participate

All procedures followed the guidelines recommended by the National Council for the Control of Animal Experimentation (Concea, Brazil) recommendation for the use of fistulated animals (Approval Protocol Number 35/2020).

Consent for publication

All the authors consent to the publication of this manuscript.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silva, A., Pereira Filho, J.M., Oliveira, J. et al. Effect of slow-release urea on intake, ingestive behavior, digestibility, nitrogen metabolism, microbial protein production, blood and ruminal parameters of sheep. Trop Anim Health Prod 55, 414 (2023). https://doi.org/10.1007/s11250-023-03833-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11250-023-03833-8

Keywords

Navigation