Skip to main content
Log in

Caiman’s fat enriched with n-3 fatty acids: potential food supplement

  • Regular Articles
  • Published:
Tropical Animal Health and Production Aims and scope Submit manuscript

Abstract

Broad-snouted caiman (Caiman latirostris) products (meat, fat and oil) are currently beginning to be valued as a food of special interest due to its high content of n-3 fatty acids. Thus, the objective of this study was to characterize the fats of caiman fed with diets enriched with flaxseeds (Linus usitatissimun) rich in n-3 fatty acids, lignans and antioxidants. Caimans were fed six days a week with: a control diet (C), and a diet enriched with ground flaxseed = 90% C + 10% flaxseed ground (FS), during 30 (FS30) and 60 (FS60) days. Animals fed the flaxseed-enriched diets increased linolenic acid content and reduced the n-6/n-3 ratio of fats relative to controls, and this improvement increased over time. The proportion of eicosapentaenoic acid also increased, but there was no difference at the time the enriched diets were offered. Caiman fat of the FS30 and FS60, showed a decrease in lipoperoxidation (24% and 40%) and reactive oxygen species (44% and 76%) accompanied by an increase in antioxidant systems. Consumption of a flax-enriched diet by caimans increases the content of essential fatty acids and improves the lipoperoxidative status of fat. This provides an enriched fat with potential for the development products for human consumption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

Data will be available upon request.

References

  • Aldai, N., Nájera, A.I., Dugan, M.E., Celaya, R., Osoro, K., 2007. Characterisation of intramuscular, intermuscular and subcutaneous adipose tissues in yearling bulls of different genetic groups. Meat Science, 7, 682–691.

    Article  Google Scholar 

  • Ackman, R.G., 2008. Fatty acids in fish and shellfish, in: C. K. Chow (Ed.) Fatty acids in foods and their health implications. CRC PRESS, 3, 155–185.

  • Aebi, H., 1984. Catalase in vitro. Methods in Enzymology, 105, 121–126. https://doi.org/10.1016/s0076-6879(84)05016-3.

    Article  CAS  PubMed  Google Scholar 

  • AOCS, 2017. Official methods and recommended of practice of the American Oil Chemists’ Society (17th ed.). American Oil Chemists’ Society. https://www.aocs.org/attain-lab-services/methods/methods/search#section-c-commercial-fats-and-oils. Accessed 3 Oct 2022

  • Brodowska, K., Catthoor, R., Brodowska, A.J., Symonowicz, M., Lodyga-Chruscinska, E., 2014. A comparison of antioxidant properties of extracts from defatted and non-defatted flax (Linum usitatissimum) seeds. Albanian Journal of Agricultural Sciense, 13, 16.

    Google Scholar 

  • Buthelezi, S., Southway, C., Govinden, U., Bodenstein, J., du Toit, K., 2012. An investigation of the antimicrobial and anti-inflammatory activities of crocodile oil. Journal of Ethnopharmacology, 143, 325–330. https://doi.org/10.1016/j.jep.2012.06.040.

    Article  CAS  PubMed  Google Scholar 

  • Caldwell, J., 2015. World trade in crocodilian skins 2011–2013. UNEP-WCMC, Cambridge.

    Google Scholar 

  • Cardoso, C.R., Favoreto, S., Jr, Oliveira, L.L., Vancim, J.O., Barban, G.B., Ferraz, D.B., Silva, J.S., 2011. Oleic acid modulation of the immune response in wound healing: a new approach for skin repair. Immunobiology, 216, 409–415. https://doi.org/10.1016/j.imbio.2010.06.007.

    Article  CAS  PubMed  Google Scholar 

  • Comba, A., Maestri, D.M., Berra, M.A., Garcia, C.P., Das, U.N., Eynard, A.R., Pasqualini, M.E., 2010. Effect of ω-3 and ω-9 fatty acid rich oils on lipoxygenases and cyclooxygenases enzymes and on the growth of a mammary adenocarcinoma model. Lipids in Health and Disease, 9, 112. https://doi.org/10.1186/1476-511X-9-112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cordain, L., Watkins, B.A., Florant, G.L., Kelher, M., Rogers, L., Li, Y., 2002. Fatty acid analysis of wild ruminant tissues: evolutionary implications for reducing diet-related chronic disease. European Journal of Clinical Nutrition, 56, 181–191. https://doi.org/10.1038/sj.ejcn.1601307.

    Article  CAS  PubMed  Google Scholar 

  • Dai, Y., Zhang, L., Yan, Z., Li, Z., Fu, M., Xue, C., Wang, J., 2021. A low proportion n-6/n-3 PUFA diet supplemented with Antarctic krill (Euphausia superba) oil protects against osteoarthritis by attenuating inflammation in ovariectomized mice. Food & Function, 12, 6766–6779.

    Article  CAS  Google Scholar 

  • Del Rio, D., Rodriguez-Mateos, A., Spencer, J.P., Tognolini, M., Borges, G., Crozier, A., 2013. Dietary (poly)phenolics in human health: structures, bioavailability, and evidence of protective effects against chronic diseases. Antioxidants & Redox Signaling, 18, 1818–1892. https://doi.org/10.1089/ars.2012.4581.

    Article  CAS  Google Scholar 

  • DeMan, J.M., Finley, J.W., Hurst, W.J., Lee, C.Y., 1999. Principles of food chemistry (2nd ed.). Aspen Publishers.

    Book  Google Scholar 

  • Di Rienzo, J., Balzarini, M., Gonzalez, L., Casanoves, F., Tablada, M., Walter Robledo, C., 2018. InfoStat versión 2017. Grupo InfoStat, FCA, Universidad Nacional de Córdoba, Argentina.

    Google Scholar 

  • Dolecek, T.A., Granditis, G., 1991. Dietary polyunsaturated fatty acids and mortality in the Multiple Risk Factor Intervention Trial (MRFIT). World Review of Nutrition and Dietetics, 66, 205–216. https://doi.org/10.1159/000419291.

    Article  CAS  PubMed  Google Scholar 

  • Dupont, J., 1999. Fats and oils, in: M. Sadler (Ed.), Encyclopedia of Human Nutrition. Academic Press.

    Google Scholar 

  • Fernandes, C.E., Vasconcelos, M.A. da S., de Almeida Ribeiro, M., Sarubbo, L.A., Andrade, S. A.C., Filho, A.B. de M., 2014. Nutritional and lipid profiles in marine fish species from Brazil. Food Chemistry, 160, 67–71https://doi.org/10.1016/j.foodchem.2014.03.05.

    Article  CAS  PubMed  Google Scholar 

  • Fernández, M., Ordóñez, J.A., Cambero, I., Santos, C., Pin, C., de la Hoz, L., 2007. Fatty acid compositions of selected varieties of Spanish dry ham related to their nutritional implications. Food Chemistry, 101, 107–112.

    Article  Google Scholar 

  • Ferreira, F.S., Brito, S.V., Saraiva, R.A., Araruna, M.K., Menezes, I.R., Costa, J.G., Coutinho, H.D., Almeida, W.O., Alves, R.R., 2010. Topical anti-inflammatory activity of body fat from the lizard Tupinambis merianaeJournal of Ethnopharmacology, 130, 514–520. https://doi.org/10.1016/j.jep.2010.05.041.

    Article  PubMed  Google Scholar 

  • Ghasemi Fard, S., Wang, F., Sinclair, A.J., Elliott, G., Turchini, G M., 2019. How does high DHA fish oil affect health? A systematic review of evidence. Critical Reviews in Food Science and Nutrition, 59, 1684–1727.

    Article  CAS  PubMed  Google Scholar 

  • Hara, A., Radin, N.S., 1978. Lipid extraction of tissues with a low-toxicity solvent. Analytical Biochemistry, 90, 420–426. https://doi.org/10.1016/0003-2697(78)90046-5.

    Article  CAS  PubMed  Google Scholar 

  • Hilleman, D.E., Wiggins, B.S., Bottorff, M.B., 2020. Critical differences between dietary supplement and prescription omega-3 fatty acids: a narrative review. Advances in Therapy, 37, 656–670. https://doi.org/10.1007/s12325-019-01211-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoffman, L.C., 2008. The yield and nutritional value of meat from African ungulates, camelidae, rodents, ratites and reptiles. Meat Science, 80, 94–100.

    Article  CAS  PubMed  Google Scholar 

  • Hoffman, L.C., Cawthorn, D.M., 2012. What is the role and contribution of meat from wildlife in providing high quality protein for consumption? Animal frontiers, 2, 40–53.

    Article  Google Scholar 

  • Hooper, L., Martin, N., Jimoh, O.F., Kirk, C., Foster, E., Abdelhamid, A.S., 2020. Reduction in saturated fat intake for cardiovascular disease. The Cochrane Database of Systematic Reviews, 8, 1–280.

  • Jiménez, P., Masson, L., Quitral, V., 2013. Composición química de semillas de chía, linaza y rosa mosqueta y su aporte en ácidos grasos omega-3. Revista Chilena de Nutrición, 40, 155–160.

    Article  Google Scholar 

  • Kaliannan, K., Li, X.Y., Wang, B., Pan, Q., Chen, C.Y., Hao, L., Xie, S., Kang, J.X., 2019. Multi-omic analysis in transgenic mice implicates omega-6/omega-3 fatty acid imbalance as a risk factor for chronic disease. Communications Biology, 2, 276. https://doi.org/10.1038/s42003-019-0521-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kasote, D.M., 2013. Flaxseed phenolics as natural antioxidants. The International Food Research Journal, 20, 27–34.

  • Larriera, A., Imhof, A., 2006. Proyecto yacaré. Cosecha de huevos para cría en granjas del género Caiman en la Argentina. In: M. L. Bolkovic and D. Ramadori (eds.), Manejo de Fauna Silvestre en Argentina. Programas de Uso Sustentable. Dirección de Fauna Silvestre, Secretaría de Ambiente y Desarrollo Sustentable, Buenos Aires, 51–64.

  • Larriera, A., 2011. Ranching the broad-snouted caiman (Caiman latirostris) in Argentina: an economic incentive for wetland conservation by local inhabitants. In: M. Abensperg-Traun,D. Roe, C.O. Criodan (eds.) Proceedings of an International Symposium on The relevance of Community-Based Natural Resources Management (CBNRM) to the Conservation and Sustainable Use of CITES-Listed Species in Exporting Countries (European Commission Directorate General Environment, Vienna, Austria), 86–92 .

  • Lawrence, R.A., Burk, R.F., 1976. Glutathione peroxidase activity in selenium-deficient rat liver. Biochemical and Biophysical Research Communications, 71, 952–958. https://doi.org/10.1016/0006-291x(76)90747-6.

    Article  CAS  PubMed  Google Scholar 

  • Leiva, P.M., Frutos, A.E., Lavandera, J., Simoncini, M.S., Labaque, M.C., Piña, C.I., González, M.A., 2021. Effect of flaxseed and flaxseed oil supplemented in caiman diet on meat fatty acids. Tropical Animal Health and Production, 53, 1–11.

    Article  Google Scholar 

  • Leiva, P.M., Valli, F.E., Piña, C.I., González, M.A., Simoncini, M.S., 2022. Chemical characterization and potential use of reptile fat from sustainable programs. Ethnobiology and Conservation, 11, 1–12.

  • Li, H.L., Chen, L.P., Hu, Y.H., Qin, Y., Liang, G., Xiong, Y.X., Chen, Q.X., 2012. Crocodile oil enhances cutaneous burn wound healing and reduces scar formation in rats. Academic emergency medicine, 19, 265–273.

    Article  PubMed  Google Scholar 

  • Li, H.L., Deng, Y.T., Zhang, Z.R., Fu, Q.R., Zheng, Y.H., Cao, X.M., Nie, J., Fu, L. W., Chen, L. P., Xiong, Y.X., Shen, D.Y., Chen, Q.X., 2016. Evaluation of effectiveness in a novel wound healing ointment-crocodile oil burn ointment. African Journal of Traditional, Complementary and Alternative Medicines, 14, 62–72. https://doi.org/10.21010/ajtcam.v14i1.8.

    Article  CAS  Google Scholar 

  • Li, N., Yue, H., Jia, M., Liu, W., Qiu, B., Hou, H., Huang, F., Xu, T., 2019. Effect of low-ratio n-6/n-3 PUFA on blood glucose: a meta-analysis. Food & Function, 10, 4557–4565. https://doi.org/10.1039/c9fo00323a.

    Article  CAS  Google Scholar 

  • Lim, K., Han, C., Dai, Y., Shen, M., Wu, T., 2009. Omega-3 polyunsaturated fatty acids inhibit hepatocellular carcinoma cell growth through blocking beta-catenin and cyclooxygenase-2. Molecular Cancer Therapeutics, 8, 3046–3055. https://doi.org/10.1158/1535-7163.MCT-09-0551.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • López-Vicario, C., González-Périz, A., Rius, B., Morán-Salvador, E., García-Alonso, V., Lozano, J.J., Bataller, R., Cofán, M., Kang, J.X., Arroyo, V., Clària, J., Titos, E., 2014. Molecular interplay between Δ5/Δ6 desaturases and long-chain fatty acids in the pathogenesis of non-alcoholic steatohepatitis. Gut, 63, 344–355. https://doi.org/10.1136/gutjnl-2012-303179.

    Article  CAS  PubMed  Google Scholar 

  • Lowry, O.H., Rosebrough, N.J., Farr, A.L., Randall, R.J., 1951. Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry, 193, 265–275.

    Article  CAS  PubMed  Google Scholar 

  • Magnino, S., Colin, P., Dei-Cas, E., Madsen, M., McLauchlin, J., Nöckler, K., Maradona, M.P., Tsigarida, E., Vanopdenbosch, E., Van Peteghem, C., 2009. Biological risks associated with consumption of reptile products. International journal of food microbiology, 134, 163–175.

    Article  CAS  PubMed  Google Scholar 

  • Microbiological Analysis of Foods Official Analytical Methodology, 2011. Pathogenic microorganisms Volume 1. National Network of Official Laboratories of Food Analysis (RENALOA). ANMAT National Ministry of Health Presidency of the Nation.

  • Mozaffarian, D., Micha, R., Wallace, S., 2010. Effects on coronary heart disease of increasing polyunsaturated fat in place of saturated fat: a systematic review and meta-analysis of randomized controlled trials. PLOS Medicine, 7, e1000252. https://doi.org/10.1371/journal.pmed.1000252.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nhidza, A.Z., Gufe, C., Marumure, J., Makuvara, Z., Chisango, T., Hanyire, G.T., Jongi, G., Makaya, P.V., Marambe, T.S., 2021. Prevalence and Antibiograms of Salmonella in Commercially Produced Crocodile meat in Zimbabwe. Tanzania Veterinary Journal, 36, 1–14.

    Article  Google Scholar 

  • Nikolakopoulou, Z., Shaikh, M.H., Dehlawi, H., Michael-Titus, A.T., Parkinson, E.K., 2013. The induction of apoptosis in pre-malignant keratinocytes by omega-3 polyunsaturated fatty acids docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) is inhibited by albumin. Toxicology Letters, 218, 150–158. https://doi.org/10.1016/j.toxlet.2013.01.021.

    Article  CAS  PubMed  Google Scholar 

  • Nissen, L., Zatta, A., Stefanini, I., Grandi, S., Sgorbati, B., Biavati, B., Monti, A., 2010. Characterization and antimicrobial activity of essential oils of industrial hemp varieties (Cannabis sativa L.). Fitoterapia, 81, 413–419. https://doi.org/10.1016/j.fitote.2009.11.010.

    Article  CAS  PubMed  Google Scholar 

  • Ogbe, R.J., Ochalefu, D.O., Mafulul, S.G., Olaniru, O.B., 2015. A review on dietary phytosterols: Their occurrence, metabolism and health benefits. Asian Journal of Plant Sciences, 5, 10–21.

    CAS  Google Scholar 

  • Ohkawa, H., Ohishi, N., Yagi, K., 1979. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Analytical Biochemistry, 95, 51–358.

    Article  Google Scholar 

  • Ohlsson, L., 2010. Dairy products and plasma cholesterol levels. Food & Nutrition Research, 54, 5124.

    Article  Google Scholar 

  • Osthoff, G., Hugo, A., Bouwman, H., Buss, P., Govender, D., Joubert, C.C., Swarts, J.C., 2010. Comparison of the lipid properties of captive, healthy wild, and pansteatitis-affected wild Nile crocodiles (Crocodylus niloticus). Comparative biochemistry and physiology. Part A, Molecular & integrative physiology, 155, 64–69. https://doi.org/10.1016/j.cbpa.2009.09.025.

    Article  CAS  Google Scholar 

  • Palacios, M.T.P., Carrascal, J.R., Rojas, M.T.A., 2008. Perfil de ácidos grasos de la grasa subcutánea e intramuscular de cerdos ibéricos cebados en montanera y con pienso "alto oleico". Eurocarne, 163, 159–170.

  • Pezzutti, G.C., 2010. Efecto de la dieta y el procesamiento sobre la calidad y el contenido de ácidos grasos poliinsaturados en carne de pollo [Tesis de Magister]. Universidad Nacional del Sur.

    Google Scholar 

  • Petrescu, D.C., Vermeir, I., Petrescu-Mag, R.M., 2019. Consumer understanding of food quality, healthiness, and environmental impact: A cross-national perspective. International Journal of Environmental Research and Public Health, 17, 169. https://doi.org/10.3390/ijerph17010169.

    Article  PubMed  PubMed Central  Google Scholar 

  • Piña, C.I., Lucero, L.E., Simoncini, M., Peterson, G., Tavella, M., 2016. Influence of flaxseed enriched diet in Broad-snouted caiman (Crocodylia: alligatoridae) meat. Zootecnia Tropical, 34, 25–33.

    Google Scholar 

  • Prasad, K., 1997. Dietary flax seed in prevention of hypercholesterolemic atherosclerosis. Atherosclerosis, 132, 69–76.

    Article  CAS  PubMed  Google Scholar 

  • Quezada, N., Cherian, G., 2012. Lipid characterization and antioxidant status of the seeds and meals of Camelina sativa and flax. European Journal of Lipid Science and Technology, 114, 974–982.

    Article  CAS  Google Scholar 

  • Rajesha, J., Murthy, K.N., Kumar, M.K., Madhusudhan, B., Ravishankar, G.A., 2006. Antioxidant potentials of flaxseed by in vivo model. Journal of Agricultural and Food Chemistry, 54, 3794–3799. https://doi.org/10.1021/jf053048a.

    Article  CAS  PubMed  Google Scholar 

  • Saadoun, A., Cabrera, M.C., 2008. A review of the nutritional content and technological parameters of indigenous sources of meat in South America. Meat Science80, 570–581.

    Article  CAS  PubMed  Google Scholar 

  • Sakaguchi, K., Nevarez, J.G., Del Piero, F., 2017. Salmonella Enterica Serovar Pomona Infection in Farmed Juvenile American Alligators (Alligator Mississippiensis). Veterinary Pathology, 54, 316–319. https://doi.org/10.1177/0300985816677149.

    Article  CAS  PubMed  Google Scholar 

  • Santativongchai, P., Srisuksai, K., Parunyakul, K., Thiendedsakul, P., Lertwatcharasarakul, P., Fungfuang, W., Tulayakul, P., 2022. Effects of crocodile oil (Crocodylus siamensis) on liver enzymes: Cytochrome P450 and Glutathione S-Transferase activities in high-fat dietfed rats. Veterinary medicine international2022, 9990231. https://doi.org/10.1155/2022/9990231.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saraswathi, V., Kumar, N., Ai, W., Gopal, T., Bhatt, S., Harris, E.N., Talmon, G.A., Desouza, C. V., 2022. Myristic acid supplementation aggravates high fat diet-induced adipose inflammation and systemic insulin resistance in mice. Biomolecules, 12, 739. https://doi.org/10.3390/biom12060739.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sepahvand, R., Delfan, B., Ghanbarzadeh, S., Rashidipour, M., Veiskarami, G.H., Ghasemian-Yadegari, J., 2014. Chemical composition, antioxidant activity and antibacterial effect of essential oil of the aerial parts of Salvia sclareoides. Asian Pacific Journal of Tropical Medicine, 7S1, S491–S496. https://doi.org/10.1016/S1995-7645(14)60280-7.

    Article  CAS  PubMed  Google Scholar 

  • Shahidi, F., Ambigaipalan, P., 2018. Omega-3 polyunsaturated fatty acids and their health benefits. Annual review of food science and technology, 9, 345–381. https://doi.org/10.1146/annurev-food-111317-095850.

    Article  CAS  PubMed  Google Scholar 

  • Simoncini, M.S., Labaque, M.C., Perlo, F., Fernandez, M.E., Leiva, P.M.L., Paez, A.R., Teira, G., Piña, C.I., 2020. Caiman latirostris meat characterization: Evaluation of the nutritional, physical and chemical properties of meat from sustainable ranching program in Argentina. Aquaculture, 515, 734570. https://doi.org/10.1016/j.aquaculture.2019.734570.

    Article  CAS  Google Scholar 

  • Rincón-Cervera, M.Á., González-Barriga, V., Romero, J., Rojas, R., López-Arana, S., 2020. Quantification and Distribution of Omega-3 Fatty Acids in South Pacific Fish and Shellfish Species. Foods, 9, 233.

    Article  PubMed  PubMed Central  Google Scholar 

  • Shim-Prydon, G., Camacho-Barreto, H., 2007. New animal products: New uses and markets for by-products and co-products of crocodile, emu, goat, kangaroo and rabbit. Journal of the Rural Industries Research and Development Corporation, 6, 1–65.

    Google Scholar 

  • Simopoulos, A.P., 1999. New products from the agri‐food industry: The return of n‐3 fatty acids into the food supply. Lipids, 34, S297–S301.

    Article  CAS  PubMed  Google Scholar 

  • Simopoulos A.P., 2016. An increase in the omega-6/omega-3 fatty acid ratio increases the risk for obesity. Nutrients, 8, 128. https://doi.org/10.3390/nu8030128.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Skov, M.N., Andersen, J.S., Baggesen, D.L., 2008. Occurrence and spread of multiresistant Salmonella Typhimurium DT104 in Danish animal herds investigated by the use of DNA typing and spatio-temporal analysis. Epidemiology and Infection, 136, 1124–1130. https://doi.org/10.1017/S0950268807009399.

    Article  CAS  PubMed  Google Scholar 

  • Soto Varela, Z., Pérez Lavalle, L., Estrada Alvarado, D., 2016. Bacteria causing of foodborne diseases: an overview at Colombia. Salud Uninorte, 32, 105–122.

    Article  Google Scholar 

  • Tocher, D.R., 2015. Omega-3 long-chain polyunsaturated fatty acids and aquaculture in perspective. Aquaculture, 449, 94–107.

    Article  CAS  Google Scholar 

  • Tocher, D.R., Betancor, M.B., Sprague, M., Olsen, R.E., Napier, J.A., 2019. Omega-3 long-chain polyunsaturated fatty acids, EPA and DHA: bridging the gap between supply and demand. Nutrients, 11, 89. https://doi.org/10.3390/nu11010089.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tomičić, Z., Čabarkapa, I., Čolović, R., Đuragić, O., Tomičić, R., 2018. Salmonella in the feed industry: Problems and potential solutions. Journal of Agronomy, 22, 2019.

    Google Scholar 

  • Tonial, I.B., Oliveira, D.F., Coelho, A.R., Matsushita, M., Coró, F.A.G., De Souza, N.E., Visentainer, J.V., 2014. Quantification of essential fatty acids and assessment of the nutritional quality indexes of lipids in tilapia alevins and juvenile tilapia fish (Oreochromis niloticus). Journal of Food Research, 3, 105.

    Article  CAS  Google Scholar 

  • Turan, H., Sonmez, G., Kaya, Y., 2007. Fatty acid profile and proximate composition of the thornback ray (Raja clavata, L. 1758) from the Sinop coast in the Black sea. Journal of Fisheries Science, 1, 97–103.

    Article  CAS  Google Scholar 

  • Ulbricht, T.L., Southgate, D.A., 1991. Coronary heart disease: seven dietary factors. Lancet, 338, 985–992. https://doi.org/10.1016/0140-6736(91)91846-m.

    Article  CAS  PubMed  Google Scholar 

  • Valenzuela, A., Valenzuela, R., 2014. Ácidos grasos omega-3 en la nutrición ¿cómo aportarlos? Revista Chilena de Nutrición, 41, 205–211.

    Article  Google Scholar 

  • Vera-Candioti, L., Leiva, P., Valli, F., Bernal, C.A., Piña, C.I., Simoncini, M.S., González, M.A., 2021. Optimization of oil extraction from caiman fat. Characterization for use as food supplement. Food Chemistry, 357, 129755. https://doi.org/10.1016/j.foodchem.2021.129755.

    Article  CAS  PubMed  Google Scholar 

  • Vitlov Uljević, M., Starčević, K., Mašek, T., Bočina, I., Restović, I., Kević, N., Racetin, A., Kretzschmar, G., Grobe, M., Vukojević, K., Saraga-Babić, M., Filipović, N., 2019. Dietary DHA/EPA supplementation ameliorates diabetic nephropathy by protecting from distal tubular cell damage. Cell and Tissue Research, 378, 301–317. https://doi.org/10.1007/s00441-019-03058-y.

    Article  CAS  PubMed  Google Scholar 

  • Wang, S.P., Chen, Y.H., Li, H., 2012. Association between the levels of polyunsaturated fatty acids and blood lipids in healthy individuals. Experimental and Therapeutic Medicine, 4, 1107–1111. https://doi.org/10.3892/etm.2012.724.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, X., Che, H., Zhang, W., Wang, J., Ke, T., Cao, R., Meng, S., Li, D., Weiming, O., Chen, J., Luo, W., 2015. Effects of mild chronic intermittent cold exposure on rat organs. International Journal of Biological Sciences, 11, 1171–1180. https://doi.org/10.7150/ijbs.12161.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wei, Y., Meng, Y., Li, N., Wang, Q., Chen, L., 2021. The effects of low-ratio n-6/n-3 PUFA on biomarkers of inflammation: A systematic review and meta-analysis. Food & Function, 12, 30–40.

    Article  CAS  Google Scholar 

  • Wong, D.L.F., Hald, T., Van Der Wolf, P.J., Swanenburg, M., 2002. Epidemiology and control measures for Salmonella in pigs and pork. Livestock Production Science, 76, 215–222.

    Article  Google Scholar 

  • Wood, J.D., Enser, M., Fisher, A.V., Nute, G.R., Sheard, P.R., Richardson, I., Hughes, S.I., Whittington, F.M., 2008. Fat deposition, fatty acid composition and meat quality: A review. Meat Science, 78, 343–358.

    Article  CAS  PubMed  Google Scholar 

  • Yang, L.G., Song, Z.X., Yin, H., Wang, Y.Y., Shu, G.F., Lu, H.X., Wang, S.K., Sun, G.J., 2016. Low n-6/n-3 PUFA ratio improves lipid metabolism, inflammation, oxidative stress and endothelial function in rats using plant oils as n-3 fatty acid source. Lipids, 51, 49–59. https://doi.org/10.1007/s11745-015-4091-z.

    Article  CAS  PubMed  Google Scholar 

  • Yates, C.M., Calder, P.C., Rainger, G.E., 2014. Pharmacology and therapeutics of omega-3 polyunsaturated fatty acids in chronic inflammatory disease. Pharmacology & Therapeutics, 141, 272–282. https://doi.org/10.1016/j.pharmthera.2013.10.010.

    Article  CAS  Google Scholar 

  • Zhang, R., Sun, J., Li, Y., Zhang, D., 2020. Associations of n- 3, n-6 Fatty Acids Intakes and n-6: n -3 Ratio with the Risk of Depressive Symptoms: NHANES 2009–2016. Nutrients, 12, 240.

  • Zhu, X., Yu, L., Zhou, H., Ma, Q., Zhou, X., Lei, T., Hu, J., Xu, W., Yi, N., Lei, S., 2018. Atherogenic index of plasma is a novel and better biomarker associated with obesity: a population-based cross-sectional study in China. Lipids in Health and Disease, 17, 37. https://doi.org/10.1186/s12944-018-0686-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank Universidad Nacional del Litoral, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), and other members of the Proyecto Yacaré for their help and support.

Funding

This work was supported by CAI + D oriented 2016, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), PICT 2019 N°04300 (to Leiva), with the support of FUNDACIÓN NATURA, COMFAUNA and funding from GORDON AND BETTY MOORE FOUNDATION (GRANT 9258).

Author information

Authors and Affiliations

Authors

Contributions

FEV, PMLL, MSS and MAG developed and conceptualized the study. FEV, PMLL, MSS, MAG and CIP analyzed and interpreted the data. FEV and PMLL drafted the manuscript. The field and laboratory work was carried out by FEV, PMLL with the collaboration in the laboratory work of JL, CG and MCC. MSS, MAG and CIP substantially revised the manuscript. All authors have read and accepted the published version of the manuscript.

Corresponding authors

Correspondence to Melina S. Simoncini or Marcela A. González.

Ethics declarations

Ethical approval

The study was approved by the Comité Asesor de Ética y Seguridad de la Investigación de la Facultad de Bioquímica y Ciencias Biológicas (Universidad Nacional del litoral),framed in the Project CAI + D Orientado (act 02/17). Animal handling was carried out following the management guide of the Crocodile Specialists Group (CSG / IUCN) "Best management practices for crocodilian farming", available on the group's website (http://www.iucncsg.org/content_images/attachments/CSG-BMP.pdf). The animals were slaughtered following the protocol of the Proyecto Yacaré (Yacarés Santafesinos/MUPCN, authorized slaughterhouse N° 4081).

Conflict of interest

The authors have declared no conflict of interest.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Valli, F.E., Leiva, P.M., Lavandera, J. et al. Caiman’s fat enriched with n-3 fatty acids: potential food supplement. Trop Anim Health Prod 55, 194 (2023). https://doi.org/10.1007/s11250-023-03602-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11250-023-03602-7

Keywords

Navigation