Skip to main content
Log in

Sequential use of nutritional additives in diets for finishing Nellore steers in confinement

  • Regular Articles
  • Published:
Tropical Animal Health and Production Aims and scope Submit manuscript

Abstract

The objective was to evaluate the effect of using prebiotics (Saccharomyces cerevisiae boulardii) or Monensin in the confinement initial phase and replacing monensin with probiotics (Bacillus toyonensis) in the final phase. Forty-eight Nellore steers were used, with an initial mean body weight of 356.2 ± 17.98 kg, distributed in a completely randomized design. Two animals per pen were confined in 80 m2 pens. The experiment was divided into two stages. The first phase lasted from day 1 to the 30th day, during which the animals were divided into two groups of 24 animals each. The treatments were the nutritional additives added to the diet: monensin or prebiotics (Saccharomyces cerevisiae boulardii). In the second phase, each group was subdivided into 12 animals by treatment, which received monensin or probiotics (Bacillus toyonensis). Dry matter intake (DMI), animal performance, and economic evaluation of the use of additives were evaluated. There was no additive effect on DMI, average daily gain, and total weight gain of the animals in the first experimental stage (0–30th day). Likewise, in the second stage (31st–100th day), there was no treatment effect for the variables of intake and performance. There was no effect of the use of different nutritional additives on carcass characteristics. The use of prebiotics sequentially to probiotics promoted gross and net yield that was superior to that of the animals that consumed monensin. Yeasts and bacteria respectively in the first and second phases of confinement can replace monensin in confinement diets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

Code availability

Not applicable.

References

  • Acharya, S., Pretz, J.P., Yoon, I., Scott, M.F., Casper, D.P., 2018. Effects of Saccharomyces cerevisiae fermentation products on the lactational performance of mid-lactation dairy cows. Translational Animal Science, 1(2), 221-228. https://doi.org/10.2527/tas2017.0028

    Article  CAS  Google Scholar 

  • Alhadas, H.M., Valadares Filho, S.C., Silva, F.F., Silva, F.A.S., Pucetti, P., Pacheco, M.V.C., Silva, B.C., Tedeschi, L.O., 2021. Effects of including physically effective fiber from sugarcane in whole corn grain diets on the ingestive, digestive, and ruminal parameters of growing beef bulls. Livestock Science, 248, 104508. https://doi.org/10.1016/j.livsci.2021.104508

  • Alshanbari, A.A., Al-Suwaiegh, S.B., Al-Yousef, Y.M., Al-Shaheen, T.A., 2020. Effect of Saccharomyces cerevisiae Fermentation Products on Productive Performance of Ardi Goat. Asian Journal of Animal Sciences, 14(2), 69-74. https://doi.org/10.3923/ajas.2020.69.74

    Article  CAS  Google Scholar 

  • Arcanjo, A.H.M., Ítavo, L.C.V., Ítavo, C.C.B.F., Franco, G.L., Dias, A.M., Difante, G.S., Lima, E.A., Santana, J.C.S., Gurgel, A.L.C., 2022. Cotton cake as an economically viable alternative fibre source of forage in a high-concentrate diet for finishing beef cattle in feedlots. Tropical Animal Health and Production, 54, 1–6. https://doi.org/10.1007/s11250-022-03120-y

    Article  Google Scholar 

  • Arcanjo, A.H.M., Ítavo, L.C.V., Ítavo, C.C.B.F., Dias, A.M., Difante, G.S., Franco, G.L., Longhini, V.Z., Gomes, F.K., Ali, O., Santana, J.C.S., Gurgel, A.L.C., Cândido, A.R., Costa, C.M., 2023. Effectiveness of cottonseed cake fibre included in the diet of Nellore steers finished in confinement. New Zealand Journal of Agricultural Research, 1, 1-15. https://doi.org/10.1080/00288233.2022.2161096

    Article  CAS  Google Scholar 

  • Arsène, M.M.J., Davares, A.K.L, Viktorovna, P.I., Andreevna, S.L., Sarra, S., Khelifi, I., Sergueïevna, D.M., 2022. The public health issue of antibiotic residues in food and feed causes, consequences, and potential solutions. Veterinary World, 15, 662–671. https://doi.org/10.14202/vetworld.2022.662-671

  • Bernardeau, M., Lehtinen, M. J., Forssten, S. D., Nurminen, P., 2017. Importance of the gastrointestinal life cycle of Bacillus for probiotic functionality. Journal of Food Science and Technology, 54(8), 2570–2584. https://doi.org/10.1007/s13197-017-2688-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Calaca, A.M.M., Figueiredo, C.B., Silva, M.B., Fernandes, J.J.R., Fernandes, M.H.M.R., Silva, L.F., Couto, V.R.M., 2022. Effect of a Bacillus probiotic strain on Nellore cattle finished on pasture during the dry season. Livestock Science, 264, 105068. https://doi.org/10.1016/j.livsci.2022.105068

  • Cappelle, E.R., Valadares Filho, S.C., Silva, J.F.C, Cecon, P.R., 2001. Estimates of the energy value from chemical characteristics of the feedstuffs. Revista Brasileira de Zootecnia, 30, 1837–1856. https://doi.org/10.1590/S1516-35982001000700022

    Article  Google Scholar 

  • Colombo, E.A., Cooke, R.F., Brandão, A.P., Wiegand, J.B., Schubach, K.M., Sowers, C.A., Duff, G.C., Block, E., Gouvêa, V.N., 2021. Performance, health, and physiological responses of newly received feedlot cattle supplemented with pre- and probiotic ingredients. Animal, 15, 1–8. https://doi.org/10.1016/j.animal.2021.100214

    Article  CAS  Google Scholar 

  • Detmann, E., Costa e Silva, L. F., Rocha, G.C., Palma, M.N.N., Rodrigues, J.P.P., 2021. Métodos para análise de alimentos. 2nd ed. Visconde do Rio Branco, MG: Suprema. 350p.

  • Dias, A.M., Oliveira, L.B., Ítavo, L.C.V., Mateus, R.G., Gomes, E.N.O., Coca, F.O.C.G., Ítavo, C.C.B.F., Nogueira, E., Menezes, B.B., Mateus, R.G., 2016. Finishing of Nellore steers, castrated and no-castrated, in feedlot diet with high-grain. Revista Brasileira de Saúde e Produção Animal. 17, 45–54. https://doi.org/10.1590/S1519-99402016000100005

    Article  Google Scholar 

  • Diaz, T.G., Branco, A.F., 2019. Live yeasts and mannanoligosaccharides for the prevention of subacute ruminal acidosis. Archivos de Zootecnia, 68, 456–462. https://doi.org/10.21071/az.v68i263.4208

  • Duffield, T.F., Merrill, J.K., Bagg, R.N., 2012. Meta-analysis of the effects of monensin in beef cattle on feed efficiency, body weight gain, and dry matter intake. Journal of Animal Science, 90, 4583–4592. https://doi.org/10.2527/jas.2011-5018

    Article  CAS  PubMed  Google Scholar 

  • Euclides, V.P.B., Costa, F.P., Euclides Filho, K., Montagner, D.B., Figueiredo, G.R., 2018. Biological and economic performance of animal genetic groups under different diets. Bioscience Journal, 34, 1683–1692. https://doi.org/10.14393/BJ-v34n6a2018-39808

  • Fereli, F., Branco, A.F., Jobim, C.C., Coneglian, S.M., Granzotto, F., Barreto, J.C., 2010. Sodium monensin and Saccharomyces cerevisiae in cattle diets: ruminal fermentation, nutrient digestibility and microbial synthesis efficiency. Revista Brasileira de Zootecnia, 39, 183–190. https://doi.org/10.1590/S1516-35982010000100024

    Article  Google Scholar 

  • Gomes, R.C., Antunes, M.T., Nogueira Filho, J.C., Ítavo, L.C.V., Leme, P.R., 2010. Live yeast culture and monensin in high grain diets for cattle: rumen fermentation and in situ degradability. Revista Brasileira de Saúde e Produção Animal, 11(1), 202–216.

    Google Scholar 

  • Gomes, R.C., Antunes, M.T., Silva, S.L., Leme, P.R., 2011. Growth performance and digestibility of feedlot Zebu steers fed yeast and monensin. Archivos de Zootecnia, 60, 1077–1086. https://doi.org/10.4321/S0004-05922011000400023

    Article  Google Scholar 

  • Gurgel, A.L.C., Difante, G.S., Montagner, D.B., Araujo, A.R., Euclides, V.P.B., 2021. The effect of residual nitrogen fertilization on the yield components, forage quality, and performance of beef cattle fed on Mombaça grass. Revista de la Facultad de Ciencias Agrarias, 53, 296–308. https://doi.org/10.48162/rev.39.029

  • Hristov, A.N., Varga, G., Cassidy, T., Long, M., Heyler, K., Karnati, S.K.R., Corl, B., Hovde, C.J., Yoon, I., 2010. Effect of Saccharomyces cerevisiae fermentation product on ruminal fermentation and nutrient utilization in dairy cows. Journal of Dairy Science, 93(2), 682-692. https://doi.org/10.3168/jds.2009-2379

    Article  CAS  PubMed  Google Scholar 

  • Ítavo, L.C.V., Ítavo, C.C.B.F., Dias, A.M., Franco, G.L., Souza, A.R.D.L., Pereira, C.S., Inácio, A.G., Mateus, R.G., Pereira, L.C., 2020. The effect of nutritional additives and nitrogen supplements used for Nellore steers during growth phase fed on deferred pasture. Journal of Agricultural Studies, 8(2), 820–831. https://doi.org/10.5296/jas.v8i2.17226

    Article  Google Scholar 

  • Kill, J.L., Haddade, I.R., Santos Júnior, I.C., Haese, D., Chambela Neto, A., Paulino, P.V.R., Possatti, C.D., 2015. Ractopamine hydrochloride on performance and carcass traits of confined Nellore cattle. Ciência Rural, 45, 1830–1834. https://doi.org/10.1590/0103-8478cr20141145

    Article  CAS  Google Scholar 

  • Magnabosco, C.U., Carnevalli, R.A., Sainz, R.D., Figueiras, R.A., Mamede, M.M., 2010. Efeito da adição de probióticos e prebióticos na quantidade e qualidade de leite de vacas da raça Girolando no Bioma Cerrado. (Embrapa Cerrados, Planaltina, DF).

  • Malafaia, P., Barbosa, J.D., Tokarnia, C.H., Oliveira, C.M.C., 2011. Behavioral disturbances in ruminants not associated with disease: origin, significance and importance. Pesquisa Veterinária Brasileira, 31, 781–790. https://doi.org/10.1590/S0100-736X2011000900010

    Article  Google Scholar 

  • Melo, A.H.F., Marques, R.S., Gouvêa, V.N., Souza, J., Batalha, C.D.A., Basto, D.C., Millen, D.D., Drouillard, J.S., Santos, F.A.P., 2019. Effects of dietary roughage neutral detergent fiber levels and flint corn processing method on growth performance, carcass characteristics, feeding behavior, and rumen morphometrics of Bos indicus cattle. Journal of Animal Science, 97, 3562–3577. https://doi.org/10.1093/jas/skz197

    Article  PubMed  PubMed Central  Google Scholar 

  • Mombach, M.A., Cabral, L.S., Lima L.R., Ferreira, D.C., Pedreira, B.C., Pereira, D.H., 2021. Association of ionophores, yeast, and bacterial probiotics alters the abundance of ruminal microbial species of pasture intensively finished beef cattle. Tropical Animal Health and Production, 53, 1–11. https://doi.org/10.1007/s11250-021-02839-4

    Article  Google Scholar 

  • Oliveira, M.V.M., Lana, R.P., Eifert, E.C., Luz, D.F., Vargas Junior, F.M., 2009. Performance of Holstein heifers in feedlot receiving monensin at different levels. Revista Brasileira de Zootecnia, 38, 1835–1840. https://doi.org/10.1590/S1516-35982009000900028

    Article  Google Scholar 

  • Pereira, M.C.S., Carrara, T.V.B., Silva, J., Silva, D.P., Watanabe, D.H.M., Tomaz, L.A., Arrigoni, M.D.B., Millen, D.D., 2015. Effects of different doses of sodium monensin on feeding behaviour, dry matter intake variation and selective consumption of feedlot Nellore cattle. Animal Production Science, 55, 170–173. https://doi.org/10.1071/AN14306

    Article  CAS  Google Scholar 

  • Perna Júnior, F., Vásquez, D.C.Z., Gardinal, R., Meyer, P.M., Berndt, A., Toyoko, R., Friguetto, S., Demarchi, J.J.A.A., Rodrigues, P.H.M., 2020. Short-term use of monensin and tannins as feed additives on digestibility and methanogenesis in cattle. Revista Brasileira de Zootecnia, 49, 1–9. https://doi.org/10.37496/rbz4920190098

  • Rigobelo, E.C., Pereira, M.C.S., Vicari, D.V.F., Millen, D.D., 2014. Use of feeding direct-fed microbials and monensin on feedlot performance and carcass traits of Nellore cattle. Revista Brasileira de Saúde e Produção Animal, 15, 415–424.

    Article  Google Scholar 

  • Silva, F.F., Valadares Filho, S.C., Ítavo, L.C.V., Veloso, C.M., Paulino, M.F., Cecon, P.R., Silva, P.A., Galvao, R.M., 2002. Productive performance, during the growing and fattening phases, of nellore bulls fed diets with different concentrate and protein levels. Revista Brasileira de Zootecnia, 31(1), 492–502. https://doi.org/10.1590/S1516-35982002000200026

    Article  Google Scholar 

  • Silva, J.A., Ítavo, C.C.B.F., Ítavo, L.C.V., Morais, M.G., Silva, P.C.G., Ferelli, K.L.S.M., Arco, T.F.F.S., 2019. Dietary addition of crude form or ethanol extract of brown propolis as nutritional additive on behaviour, productive performance and carcass traits of lambs in feedlot. Journal of Animal and Feed Sciences, 28, 31–40. https://doi.org/10.22358/jafs/105442/2019

  • Silvestre, A.M., Millen D.D., 2021. The 2019 Brazilian survey on nutritional practices provided by feedlot cattle consulting nutritionists. Revista Brasileira de Zootecnia, 50, 1–25. https://doi.org/10.37496/rbz5020200189

  • Sucu, E., Nayeri, A., Fernandez, M.V.S., Upah, N.C., Baumgard, L.H., 2014. The effects of supplemental protease enzymes on production variables in lactating Holstein cows. Italian Journal of Animal Science, 13, 348–351. https://doi.org/10.4081/ijas.2014.3186

    Article  Google Scholar 

  • Sun, P., Wang, J.Q., Zhang, H.T., 2010. Effects of Bacillus subtilis natto on performance and immune function of preweaning calves, Journal of Animal Science, 93, 5851–5855. https://doi.org/10.3168/jds.2010-3263

    Article  CAS  Google Scholar 

  • Valadares Filho, S.C., Silva, L.F.C., Lopes, A.S., Prados, L.F., Chizzotti, M.L., Machado, P.A.S., Bissaro, L.Z., Furtado, T., 2016. BR-CORTE 3.0: Cálculo de exigências nutricionais, formulação de dietas e predição de desempenho de zebuínos puros e cruzados, (UFV, Viçosa, MG). https://doi.org/10.5935/978-85-8179-111-1.2016B001

  • Wada, F.Y., Prado, I.N., Silva, R.R., Moletta, J.L., Visentainer, J.V., Zeoula, L.M., 2008. Whole linseed and canola seed on performance apparent digestibility and carcass characteristics of nellore heifers finished in feedlot. Ciência Animal Brasileira, 9, 883–895. https://revistas.ufg.br/vet/article/view/1135

  • Weiss, C.P., Beck, P.A., Gadberry, M.S., Richeson, J.T., Wilson, B.K., Robinson, C.A., Zhao, J., Hess, T., Hubbell, D., 2020. Effects of intake of monensin during the stocker phase and subsequent finishing phase on performance and carcass characteristics of finishing beef steers. Applied Animal Science, 36, 668–676. https://doi.org/10.15232/aas.2020-02031.

  • Wood, K.M., Pinto, A.C.J., Millen, D.D., Guzman, R.K. Penner, G.B., 2016. The effect of monensin concentration on dry matter intake, ruminal fermentation, short-chain fatty acid absorption, total tract digestibility, and total gastrointestinal barrier function in beef heifers. Journal of Animal Science, 94, 2471–2478. https://doi.org/10.2527/jas.2016-0356

    Article  CAS  PubMed  Google Scholar 

  • Zeineldin, M., Barakat, R., Elolimy, A., Salem, A.Z.M., Elghandour, M.M.Y., Monroy, J.C., 2018. Synergetic action between the rumen microbiota and bovine health. Microbial Pathogenesis, 124, 106–115. https://doi.org/10.1016/j.micpath.2018.08.038

    Article  PubMed  Google Scholar 

  • Zornitta, C.S., Ítavo, L.C.V., Ítavo, C.C.B.F., Santos, G.T., Dias, A.M., Difante, G.S., Gurgel, A.L.C., 2021. Kinetics of in vitro gas production and fitting mathematical models of corn silage. Fermentation, 7, 298. https://doi.org/10.3390/fermentation7040298

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank the Universidade Federal de Mato Grosso do Sul, the Lallemand Brasil Ltda, the Conselho Nacional de Desenvolvimento Científico e Tecnológico, and the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – CAPES (Financing Code 001).

Funding

This research was funded by the grant number: 001 [Coordination for the Improvement of Higher Education Personnel-Brazil (CAPES)]; National Council for Scientific and Technological Development (CNPq).

Author information

Authors and Affiliations

Authors

Contributions

LCMM, LCVI, CCFBI, and AMD conceived and designed the research and wrote the manuscript. LCVI, AHMA, and ALCG data analysis and discussion of results and reviewed the manuscript. LMN, AHMA, CSZ, PEOM, and APS conducted the experiment, laboratorial analysis, and collection of samples. All the authors read and approved the manuscript.

Corresponding author

Correspondence to Luís Carlos Vinhas Ítavo.

Ethics declarations

Ethical approval

This study was conducted in strict accordance with the recommendations of the Guide for the National Council for the Control of Animal Experiments. The experimental protocol of research was approved by the Ethics Committee on Animal Use of Federal University of Mato Grosso do Sul (Protocol Nº 1.186/2021).

Conflict of interest

The authors declare no competing interests.

Additional information

Paulo Eduardo de Oliveira Monteiro is deceased. This paper is dedicated to his/her memory.

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Melo Medina, L.C., Ítavo, L.C.V., Ítavo, C.C.B.F. et al. Sequential use of nutritional additives in diets for finishing Nellore steers in confinement. Trop Anim Health Prod 55, 151 (2023). https://doi.org/10.1007/s11250-023-03576-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11250-023-03576-6

Keywords

Navigation