Skip to main content
Log in

Encapsulated pepper blend in the diet of confined Holstein bullocks: effect on ruminal volatile fatty acid profiles, growth performance, and animal health

  • Regular Articles
  • Published:
Tropical Animal Health and Production Aims and scope Submit manuscript

Abstract

Dairy bulls in feedlots have been a viable alternative for dairy producers to reinforce the family’s income. Aspects such as balanced diets and proper management are essential for these animals to develop and allow an economic return fully. Plant extracts are performance enhancers and ruminal and intestinal health promoters. Therefore, this study aims to evaluate whether the addition of encapsulated pepper (EP) blend (Capsicum annuum, Capsicum frutescens, and Capsicum chinense — rich in capsaicin) interferes with the volatile fatty acid profile in the rumen and enhances the growth performance of Holstein bullocks in a feedlot. For the experiment, 24 whole bullocks were used, distributed into three treatments, with eight replicates per treatment (one animal as an experimental unit, kept in an individual stall): groups T0, T200, and T400, receiving 0 mg, 200 mg, and 400 mg EP/kg of concentrate, respectively. Knowing the intake of concentrate and the average body weight during the experiment, we calculated the dose in mg/kg/day of the EP; that is, the T200 animals consumed 2.45 mg EP/kg (body weight –BW)/day; and T400 consumed 4.9 mg EP/kg BW/day. The animals from T400 presented a more significant weight gain between days 15 and 45 of confinement compared to T0 (P=0.05). This same treatment (T400) had a trend of lower weight gain between days 46 and 90 (P=0.09). Likewise, the T400 group had higher feed efficiency than T0 between days 15 and 45. Furthermore, the treatments affected the white blood cell count, with the T400 bullocks showing a higher number of neutrophils and lymphocytes. Higher levels of C-reactive protein (CRP) were measured in the serum of steers from both groups that consumed pepper (P<0.01). Interaction between treatment × day was observed for the activity of glutathione enzymes (GST and GPx) and levels of lipoperoxidation (LPO) (characterized by antioxidant stimulation) associated with the reduction in serum LPO; similar antioxidant enzymes behavior was observed in the liver. In the small intestine (jejunum), the activities of antioxidant enzymes (GST and GPx) were lower in the two groups of cattle that consumed EP, and LPO was lower. The treatments affected the concentration of acetic acid in the rumen fluid, presenting lower levels in T400 compared to T200 and similar T0 (P≤0.05). There was an interaction of day vs. treatment for propionic acid, presenting a higher concentration on day 45 at T400 than T0. These results, therefore, allow us to conclude that adding 400 mg of pepper extract can be an excellent additive for weight gain at the beginning of the experiment; however, over time, this dose of additive negatively affects weight gain. Both EP doses stimulated serum and tissue antioxidant responses, reducing lipoperoxidation. However, the 400 mg EP/kg concentrate suggests a pro-inflammatory response (leukocytosis and elevated CRP), s probably related to the high dose (i.e., between 1.7 and 2.4 g/animal/day).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

All data and materials used in the experiment are available and are ready to be provided if needed.

References

  • Adaszek, Ł., Gadomska, D, Mazurek Ł, Łyp P, Madany J, Winiarczyk S., 2019. Properties of capsaicin and its utility in veterinary and human medicine. Res Vet Sci 123, 14-19. https://doi.org/10.1016/j.rvsc.2018.12.002.

    Article  CAS  PubMed  Google Scholar 

  • Antonious, G.F., Kochhar, T.S., Jarret, R.L., Snyder, J.C., 2006. Antioxidants in hot pepper: Variation among accessions. J Environ Sci Health B 41:1237–1243. doi: https://doi.org/10.1080/03601230600857114.

    Article  CAS  PubMed  Google Scholar 

  • Bolton, S.E., Von Keyserlingk, MAG., 2021. The dispensable surplus dairy calf: is this issue a "wicked problem" and where do we go from here? Front Vet Sci 8, 660934.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bradford, M.M., 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72, 248-254. https://doi.org/10.1006/abio.1976.9999.

    Article  CAS  PubMed  Google Scholar 

  • Calsamiglia, S., Busquet, M., Cardozo, P.W., Castillejos, L., Ferret, A., 2007. Review: Essential oils as modifiers of rumen microbial fermentation. J Dairy Sci 90, 2580-2595.

    Article  CAS  PubMed  Google Scholar 

  • Cave J.G., Callinan A.P., Woonton W.K., 2005. Mortalities in bobby calves associated with long distance transport. Aust. Vet. J. 83:82–84

    Article  CAS  PubMed  Google Scholar 

  • Cécere, B. G., Molosse, V.L., Deolindo, G. L., Dazuk, V., Dutra Silva, A., Schetinger, M.R.C., Vedovatto, M., Zotti, C.A. and da Silva, A.S., 2022. Effects of pepper extract in suckling lamb feed: Growth performance, metabolism, and oxidative responses. Ann Anim Sci 22, 731-739.

    Article  Google Scholar 

  • Celi, P. 2010. The role of oxidative stress in small ruminants' health and production. Rev Bras Zootec 39, 348-363.

    Article  Google Scholar 

  • Cunha, M. G., Alba, D.F., Leal, K.W., Marcon, H.; Da Siva A.S. 2020. Inclusion of pepper extract containing capsaicin in the diet of ewes in the mid-lactation period: effects on health, milk production, and quality. Res Soc Devel 9, e46791110020.

    Article  Google Scholar 

  • Dey, A., Attri, K., Dahiya, S.S. and Paul, S.S., 2021. Influence of dietary phytogenic feed additives on lactation performance, methane emissions and health status of Murrah buffaloes (Bubalus bubalis). J Sci Food Agric 101, 4390-4397. https://doi.org/10.1002/jsfa.11080

    Article  CAS  PubMed  Google Scholar 

  • Eidsvik, J.C., McKinnon, J.J., Blanchard, A., Khelil, H., Moya, D., Penner, G.B., 2022. Effects of rumen-protected Capsicum oleoresin on dry matter intake, average daily gain, and carcass characteristics of finishing beef steers. Appl Anim Sci 38, 335-342. https://doi.org/10.15232/aas.2022-02289.

    Article  Google Scholar 

  • El Hack, A., Alagawany M. E., Abdelnour, S., 2019. Responses of growing rabbits to supplementing diet with a mixture of black and red pepper oils as a natural growth promoter. J Anim Physol Anim Nutr 103, 509-517. https://doi.org/10.1111/jpn.13045.

    Article  CAS  Google Scholar 

  • Fandiño, I., S. Calsamiglia, A., Blanch M.. 2008. Anise and capsicum as alternatives to monensin to modify rumen fermentation in beef heifers fed a high concentrate diet. Anim. Feed Sci Technol 145, 409–417.

    Article  Google Scholar 

  • Fávero, J.F., Da Silva, A.S., Bottari, N.B., Schetinger, M.R.C., Morsch, V.M.M., Baldissera, M.D., Stefani, L.M., Machado, G., 2018. Physiological changes in the adenosine deaminase activity, antioxidant and inflammatory parameters in pregnant cows and at post-partum. J Anim Physiol Anim Nutr 102, 910-916. https://doi.org/10.1111/jpn.12917.

    Article  CAS  Google Scholar 

  • Feldman, B.F., Zinkl, J.G. and Jain, N.C. 2000. Schalm’s Veterinary Hematology. 5th Lippincott Williams & Wilkins, 1120-1124.

    Google Scholar 

  • Gu, H., Yang, Z., Yu, W., Xu, K., & Fu, Y. F. 2019. Antibacterial activity of capsaicin against sectional cariogenic bacteria. Pak J Zool 51, 681. https://doi.org/10.17582/journal.pjz/2019.51.2.681.687.

    Article  CAS  Google Scholar 

  • Hamlin, R., Knight, J., & Cuthbert, R. (2016). Niche marketing and farm diversification processes: Insights from New Zealand and Canada. Renewable Agr Food Syst 31, 86-98. https://doi.org/10.1017/S1742170514000489.

    Article  Google Scholar 

  • Hassan, F.U., Arshad, M.A., Ebeid, H.M., Rehman, M.S., Khan, M.S., Shahid, S., Yang, C., 2020. Phytogenic additives can modulate rumen microbiome to mediate fermentation kinetics and methanogenesis through exploiting diet-microbe interaction. Front Vet Sci. 12;7:575801. https://doi.org/10.3389/fvets.2020.575801

    Article  Google Scholar 

  • Hazekawa, M., Hideshima, Y., Ono, K., Nishinakagawa, T., Kawakubo-Yasukochi, T., Takatani-Nakase, T., Nakashima, M., 2017. Anti-inflammatory effects of water extract from bell pepper (Capsicum annuum L. var. grossum) leaves in vitro. Exp Ther Med 14, 4349-4355. https://doi.org/10.3892/etm.2017.5106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hermes-lima, M., Willmore, W. G., Storey, K. B., 1995. Quantification of lipid peroxidation in tissue extracts based on Fe(III) xylenol orange complex formation. Free Rad Biol Med 19, 271-280.

    Article  CAS  PubMed  Google Scholar 

  • Hsu, Y. J., Huang, W. C., Chiu, C. C., Liu, Y. L., Chiu, W. C., Chiu, C. H., Chiu, Y. S. & Huang, C. C. 2016. Capsaicin supplementation reduces physical fatigue and improves exercise performance in mice. Nutrients 8, 648. https://doi.org/10.3390/nu8100648.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim, S. H., Hwang, J. T., Park, H. S., Kwon, D. Y., Kim, M. S., 2013. Capsaicin stimulates glucose uptake in C2C12 muscle cells via the reactive oxygen species (ROS)/AMPK/p38 MAPK pathway. Biochem bioph Res Commun 439, 66-70. https://doi.org/10.1016/j.bbrc.2013.08.027.

    Article  CAS  Google Scholar 

  • Leal, W.K., Alba, D. F., Cunha, G. M., Marcon, H., Oliveira, F. C., Wagner, R., Silva, A. D. Lopes, T. F., Jesus, L. S. B., Schetinger, M. R. C., Zotti, C. A., Kessler, J. D. Vedovatto, M., Silva, A. S., 2021. Effects of biocholine powder supplementation in ewe lambs: Growth, rumen fermentation, antioxidant status, and metabolism. Biotechnol Rep. 29, e00580.

    Article  CAS  Google Scholar 

  • Mannervik, B., Gutenberg, C., 1981. Glutathione transferase (human placenta). Methods Enzymol. 77: 231-235.

    Article  CAS  PubMed  Google Scholar 

  • Marklund S, Marklund G. 1974. Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur J Biochem 47, 469-74. doi: https://doi.org/10.1111/j.1432-1033.1974.tb03714.x.

    Article  CAS  PubMed  Google Scholar 

  • Monserrat, J M., Gerataciano, L A., Pinho, G L. L., 2003. Determination of lipid peroxides in invertebrates tissues using the Fe(III) xylenol orange complex formation. Arch Environ Contam Toxicol 45, 177-183.

    Article  CAS  PubMed  Google Scholar 

  • Mueller, M., Beck, V., Jungbauer, A., 2011. PPARalpha activation by culinary herbs and spices. Planta Med 77, 497–504.

    Article  CAS  PubMed  Google Scholar 

  • Negulesco, J. A., Noel, S.A., Newman, H.A.I., 1987. Effect of pure capsaicinoids (capsaicin and dihydrocapsaicin) on plasma lipids and lipoprotein concentrations of turmey poults. Atherosclerosis 64, 85–90.

    Article  CAS  PubMed  Google Scholar 

  • Ochi, T., Takaishi, Y., Kogure, K., Yamauti, I., 2003. Antioxidant activity of a new capsaicin derivative from Capsicum a nnuum. J Nat Prod 66, 1094-1096. https://doi.org/10.1021/np020465y

    Article  CAS  PubMed  Google Scholar 

  • Oh, J., Giallongo, F., Frederick, T., Pate J., Walusimbi, S., Elias, R.J., Wall, E.H., Bravo, D., Hristov, A.N., 2015. Effects of dietary Capsicum oleoresin on productivity and immune responses in lactating dairy cows. J Dairy Sci 98, 6327-6339. https://doi.org/10.3168/jds.2014-9294.

    Article  CAS  PubMed  Google Scholar 

  • Oh J., Harper M., Giallongo F., Bravo D.M., Wall E.H., Hristov A.N., 2017. Effects of rumen-protected Capsicum oleoresin on productivity and responses to a glucose tolerance test in lactating dairy cows. J Dairy Sci 100, 1888-1901.

    Article  CAS  PubMed  Google Scholar 

  • Phairong, M.M., Lalbiaknunga, J., Lalnunmawia, F., 2020. Mizo chilli (Capsicum frutescens): A potential source of capsaicin with broad-spectrum ethno pharmacological applications. J Pharm Phytochem 9, 670-672.

    CAS  Google Scholar 

  • Rodrigues-Filho, M.; Mancio, A.B.; Lana, R.P. et al., 2002. Desempenho e características de carcaça de novilhos de origem leiteira, alimentados com diferentes níveis de concentrado e de cama de frango. Rev Bras Zootec 32(3), 672-682.

    Article  Google Scholar 

  • Rodriguez-Prado, M., Ferret, A., Zwieten, J., Gonzalez, L., Bravo, D., Calsamiglia, S., 2012. Effects of dietary addition of capsicum extract on intake, water consumption, and rumen fermentation of fattening heifers fed a high-concentrate diet. J Anim Sci 90, 1879-1884. https://doi.org/10.2527/jas.2010-3191.

    Article  CAS  PubMed  Google Scholar 

  • Rogers, J., Urbina, S.L., Taylor, L.W., Wilborn, C.D., Purpura, M., Jäger, R., Juturu, V., 2018. Capsaicinoids supplementation decreases percent body fat and fat mass: adjustment using covariates in a post hoc analysis. BMC Obes 5, 22. doi: https://doi.org/10.1186/s40608-018-0197-1.

    Article  PubMed  PubMed Central  Google Scholar 

  • Russell, J.R., Sexten, W.J., Kerley, M.S., Hansen, S.L., 2016. Relationship between antioxidant capacity, oxidative stress, and feed efficiency in beef steers. J Anim Sci 94, 2942-53. doi: https://doi.org/10.2527/jas.2016-0271.

    Article  CAS  PubMed  Google Scholar 

  • Sproston, N.R., Ashworth, J.J., 2018. Role of c-reactive protein at sites of inflammation and infection. Front Immunol 13;9:754. https://doi.org/10.3389/fimmu.2018.00754.

    Article  CAS  Google Scholar 

  • Tager, L.R., Krause, K.M., 2011. Effects of essential oils on rumen fermentation, milk production, and feeding behavior in lactating dairy cows. J Dairy Sci 94, 2455-2464, https://doi.org/10.3168/jds.2010-3505.

    Article  CAS  PubMed  Google Scholar 

  • Wang, H., Ye, J., 2015. Regulation of energy balance by inflammation: common theme in physiology and pathology. Rev Endocr Metab Disord 16, 47-54. https://doi.org/10.1007/s11154-014-9306-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weiller MAA, Schmoeller E, Vieira LV, Barbosa AA, de Oliveira Feijó J, Brauner CC, Schmitt E, Corrêa MN, Rabassa VR, Del Pino FAB. 2021. Zootechnical and health performance of Holstein x Gir crossbred calves. Trop Anim Health Prod. 53, 152. https://doi.org/10.1007/s11250-021-02601-w

    Article  PubMed  Google Scholar 

  • Wendel A. 1981. Glutathione peroxidase. Methods. Enzymol. 77: 325–33. https://doi.org/10.1016/S0076-6879(81)77046-0

    Article  CAS  PubMed  Google Scholar 

  • Wesolowska, A., Jadczak, D., Grzeszczuk, M., 2011. Chemical composition of the pepper fruit extracts of hot cultivars Capsicum annuum L. Acta Sci Pol Hortorum Cultus 10, 171- 184.

    Google Scholar 

  • Westphalen, M. F., Carvalho, P. H., Oh, J., Hristov, A. N., Staniar, W. B., & Felix, T. L. 2021. Effects of feeding rumen-protected Capsicum oleoresin on growth performance, health status, and total tract digestibility of growing beef cattle. Animal Feed Science and Technology, 271, 114778. doi:https://doi.org/10.1016/j.anifeedsci.2020.114778

    Article  CAS  Google Scholar 

  • Yu, X.H., Zheng, X.L., Tang, C.K., 2015. Peroxisome proliferator-activated receptor α in lipid metabolism and atherosclerosis. Adv Clin Chem 71, 171-203. https://doi.org/10.1016/bs.acc.2015.06.005.

    Article  CAS  PubMed  Google Scholar 

  • Zimmer, A.R., Leonardi, B., Miron D., Schapoval E., Oliveira J.R., Gosmann, G., 2012. Antioxidant and anti-inflammatory properties of Capsicum baccatum: From traditional use to scientific approach. J Ethnopharmacol 139, 228-233.

    Article  CAS  PubMed  Google Scholar 

  • Adwas, A.A., Elsayed, A.S.I., Azab, A.E., 2019. Oxidative stress and antioxidant mechanisms in human body. J Appl Biotechnol Bioeng 6, 43–47. 10.15406/jabb.2019.06.00173

  • Campos, M., Ruiz, J.R., Guerrero, L., Betancur, D., 2016. Capsicum chinense: composition and functional properties. pp. 289-292. Doi: https://doi.org/10.1007/978-1-4899-7662-8_20.

  • Finlayson, B.L. 2010. Köppen-Geiger climate classification. Encyclopedia of Geography pp. 1666 – 1669.

  • Korrapati, M.C., Mehendale, H.M., 2014. Urea. Encyclopedia of Toxicology (Third Edition), pp. 885-888.

  • Pinto, C. M. F., de Oliveira Pinto, C. L., & Donzeles, S. M. L. 2013. Pimenta Capsicum: propriedades químicas, nutricionais, farmacológicas e medicinais e seu potencial para o agronegócio. Rev Bras Agrop Sust. https://doi.org/10.21206/rbas.v3i2.225.

Download references

Acknowledgements

The authors thank the Brazilian National Council for Scientific and Technological Development - CNPq and the Scientific and Technological Research Support Foundation of Santa Catarina State - FAPESC. The first author also received a CAPES master’s fellowship.

Author information

Authors and Affiliations

Authors

Contributions

CM Giacomelli and AS Da Silva contributed to the design and implementation of the research to the analysis of the results. R Wagner and M Vedovatto helped develop the project and its execution and financing. MS Marchiori, AL Nascimento, MG Vitt, and VL Molosse participated in the execution of the experiment and collection of samples and data. FC Oliveira and CF Souza performed the laboratory analysis. All authors discussed the results and contributed to the final manuscript.

Corresponding author

Correspondence to Aleksandro Schafer da Silva.

Ethics declarations

Ethics approval

The ethics committee approved the project on the use of animals in research at UDESC, protocol number 4671260221.

Consent to participate

All names in the author list were involved in various stages of experimentation or writing.

Consent for publication

All authors agree to submit the paper for publication in the Tropical Animal Health and Production.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary material 1

Standardization of the measurement technique for short-chain fatty acids. (DOCX 12 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Giacomelli, C.M., Marchiori, M.S., do Nascimento, A.L. et al. Encapsulated pepper blend in the diet of confined Holstein bullocks: effect on ruminal volatile fatty acid profiles, growth performance, and animal health. Trop Anim Health Prod 55, 114 (2023). https://doi.org/10.1007/s11250-023-03473-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11250-023-03473-y

Keywords

Navigation