Skip to main content
Log in

Estimation of enteric methane emission factors for Ndama cattle in the Sudanian zone of Senegal

  • Regular Articles
  • Published:
Tropical Animal Health and Production Aims and scope Submit manuscript

Abstract

Methane (CH4) emission estimations for cattle in Sub-Saharan Africa (SSA) reflect limited production levels and diets that are high in cellulose forage. However, data on these livestock systems is lacking for their accurate evaluation. To provide guidance for climate change mitigation strategies in Senegal, it is necessary to obtain reliable estimates of CH4 emissions from Ndama cattle reared in grazing systems, which is the predominant cattle system in the country. The objective of this study was to determine the annual methane emission factor (MEF) for enteric fermentation of Ndama cattle following the IPCC Tier 2 procedure. Our estimated annual MEF at the herd scale was 30.8 kg CH4/TLU (30.7 kg CH4/head/yr for lactating cows and 15.1 kg CH4/head/yr for other cattle). These values are well below the default IPCC emission factor (46 and 31 kg CH4/head/yr for dairy and other cattle, respectively) proposed in the Tier 1 method for Africa. Our study showed that feed digestibility values differ with season (from 46 to 64%). We also showed that cattle lose weight and adapt to lower feed requirements during the long dry season, with a resulting major reduction in methane emissions. The results of this work provide a new framework to re-estimate the contribution of grazing systems to methane emissions in Africa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Archimède H, Eugène M, Magdeleine CM, Boval M, Martin C, Morgavi DP and Doreau M 2011. Comparison of methane production between C3 and C4 grasses and legumes. Animal Feed Science and Technology 166, 59-64.

    Article  Google Scholar 

  • Assouma MH 2016. Approche écosystémique du bilan des gaz à effet de serre d’un territoire sylvo-pastoral sahélien : contribution de l’élevage. PhD thesis, Montpellier University, Montpellier, France.

  • Assouma MH, Lecomte P, Hiernaux P, Ickowicz A, Corniaux C, Decruyenaere V and Vayssières J 2018. How to better account for livestock diversity and fodder seasonality in assessing the fodder intake of livestock grazing semi-arid sub-Saharan Africa rangelands. Livestock Science 216, 16-23.

    Article  Google Scholar 

  • Ayantunde AA 1998. Influence of grazing regimes on cattle nutrition and performance and vegetation dynamics in Sahelian rangelands. PhD thesis, Wageningen Agricultural University, Wageningen, Netherlands.

  • Ayantunde AA, Asse R, Said MY and Fall A 2014. Transhumant pastoralism, sustainable management of natural resources and endemic ruminant livestock in the sub-humid zone of West Africa. Environment, development and sustainability 16, 1097-1117.

    Article  Google Scholar 

  • Baile CA and Forbes JM 1974. Control of feed intake and regulation of energy balance in ruminants. Physiological Reviews 54, 160-214.

    Article  CAS  Google Scholar 

  • Blaxter KL and Clapperton JL 1965. Prediction of the amount of methane produced by ruminants. British Journal of Nutrition 19, 511–522.

    Article  CAS  Google Scholar 

  • Charmley E, Stephens ML and Kennedy PM 2008. Predicting livestock productivity and methane emissions in northern Australia: development of a bio-economic modelling approach. Australian Journal of Experimental Agriculture 48, 109-113.

    Article  CAS  Google Scholar 

  • Chirat G 2009. Description et modélisation du comportement spatial et alimentaire de troupeaux bovins en libre pâture sur parcours en zone tropicale sèche. PhD thesis, Montpellier SupAgro, Montpellier, France.

  • Chirat G, Groot JC, Messad S, Bocquier F and Ickowicz A 2014. Instantaneous intake rate of free grazing cattle as affected by herbage characteristics in heterogeneous tropical agro-pastoral landscapes. Applied Animal Behaviour Science 157, 48-60.

    Article  Google Scholar 

  • Doreau M, Benhissi H, Thior YE, Bois B, Leydet C, Genestoux, L. and Ickowicz A 2016. Methanogenic potential of forages consumed throughout the year by cattle in a Sahelian pastoral area. Animal Production Science 56, 613-618.

    Article  CAS  Google Scholar 

  • Ejlertsen M, Poole J and Marshall K 2012. Sustainable management of globally significant endemic ruminant livestock in West Africa: Estimate of livestock demographic parameters in Senegal. Nairobi: ILRI Research Report 29. 48 pp

  • Elliott, RC, Fokkema, K and French, CH 1961. Herbage consumption studies on beef cattle. 2. Intake studies on Afrikander and Mashona cows on veld grazing-1959/60. Rhodesia Agricultural Journal, 58, 124-130.

    Google Scholar 

  • Escobar-Bahamondes P, Oba M and Beauchemin KA 2017. An evaluation of the accuracy and precision of methane prediction equations for beef cattle fed high-forage and high-grain diets. animal 11, 66-77.

  • Eugène M, Martin C, Mialon MM, Krauss D, Renand G and Doreau M 2011. Dietary linseed and starch supplementation decreases methane production of fattening bulls. Animal Feed Science and Technology, 166, 330-337.

    Article  Google Scholar 

  • Ezanno P, Ickowicz A and Bocquier F 2003. Factors affecting the body condition score of Ndama cows under extensive range management in Southern Senegal. Animal Research 52, 37-48.

    Article  Google Scholar 

  • Ezanno P, Ickowicz A and Lancelot R 2005. Relationships between Ndama cow body condition score and production performance under an extensive range management system in Southern Senegal: calf weight gain, milk production, probability of pregnancy, and juvenile mortality. Livestock Production Science 92, 291–306.

    Article  Google Scholar 

  • Gaidet N and Lecomte P 2013. Benefits of migration in a partially-migratory tropical ungulate. BMC ecology, 13 (1), 36.

    Article  Google Scholar 

  • Goopy JP, Onyango AA, Dickhoefer U and Butterbach-Bahl K 2018. A new approach for improving emission factors for enteric methane emissions of cattle in smallholder systems of East Africa–Results for Nyando, Western Kenya. Agricultural Systems 161, 72-80.

    Article  Google Scholar 

  • Grimaud, P., Richard, D., Kanwé, A., Durier, C., & Doreau, M. (1998). Effect of undernutrition and refeeding on digestion in Bos taurus and Bos indicus in a tropical environment. Animal Science, 67(1), 49-58.

    Article  Google Scholar 

  • Guérin H and Roose E 2017. Ingestion, restitution et transfert d'éléments fertilisants aux agrosystèmes par les ruminants domestiques en régions semi-arides d'Afrique Occidentale. Points de vue d'un zootechnicien et d'un agro-pédologue. In E. Roose, Restauration de la productivité des sols tropicaux et méditerranéens: Contribution à l'agro-écologie (pp. 133-148). IRD Editions. Montpellier, France.

  • Havlík P, Valin H, Herrero M, Obersteiner M, Schmid E, Rufino MC and Frank S 2014. Climate change mitigation through livestock system transitions. Proceedings of the National Academy of Sciences 111, 3709-3714.

    Article  Google Scholar 

  • Herrero M, Thornton PK, Kruska R and Reid RS 2008. Systems dynamics and the spatial distribution of methane emissions from African domestic ruminants to 2030. Agriculture, Ecosystems and Environment 126, 122-137.

    Article  CAS  Google Scholar 

  • Herrero M, Havlík P, Valin H, Notenbaert A, Rufino MC and Thornton P K 2013. Biomass use, production, feed efficiencies, and greenhouse gas emissions from global livestock systems. Proceedings of the National Academy of Sciences 52, 20888-20893.

    Article  Google Scholar 

  • Hristov A N, Kebreab E, Niu M, Oh J, Bannink A, Bayat A R, ... & Dijkstra J 2018. Symposium review: uncertainties in enteric methane inventories, measurement techniques, and prediction models. Journal of dairy science, 101(7), 6655-6674.

  • Ickowicz A and Mbaye M 2001. Forêts soudaniennes et alimentation des bovins au Sénégal: potentiel et limites. Bois et forêts des tropiques, 270, 47-61.

    Google Scholar 

  • IPCC 2006. 2006 IPCC guidelines for National greenhouse gas inventories. Prepared by the national greenhouse gas inventories programme. In: Eggleston, H.S., Buendia, L., Miwa, K., Ngara, T., Tanabe, K. (Eds.), Agriculture, Forestry and Other Land Use, vol. 4. Institute for Global Environmental Strategies. International Panel on Climate Change, Hayama, Japan.

  • ISRA, ITA and CIRAD 2005. Bilan de la recherche agricole et agroalimentaire au Sénégal, Report. p. 520.

  • Jaurena G, Cantet JM, Arroquy JI, Palladino RA, Wawrzkiewicz M and Colombatto D 2015. Prediction of the Ym factor for livestock from on-farm accessible data. Livestock Science 177, 52-62.

    Article  Google Scholar 

  • Kaewpila C and Sommart K 2016. Development of methane conversion factor models for Zebu beef cattle fed low-quality crop residues and by-products in tropical regions. Ecology and evolution 20, 7422-7432.

    Article  Google Scholar 

  • Kennedy PM and Charmley E 2012. Methane yields from Brahman cattle fed tropical grasses and legumes. Animal Production Science, 52, 225-239.

    Article  CAS  Google Scholar 

  • Konandreas, PA and Anderson FM 1982. Cattle herd dynamics: an integer and stochastic model for evaluating production alternatives. ILRI publications (aka ILCA Research Report n°2 and ILRAD).

  • Kouazounde JB, Gbenou JD, Babatounde S, Srivastava N, Eggleston SH, Antwi C ... and McAllister TA 2015. Development of methane emission factors for enteric fermentation in cattle from Benin using IPCC Tier 2 methodology. animal 9, 526-533.

  • Kurihara M, Magner T, Hunter RA and McCrabb GJ 1999. Methane production and energy partition of cattle in the tropics. British Journal of Nutrition 81:227-234.

    Article  CAS  Google Scholar 

  • Lecomte P, Decruyenaere V, Eugène M, Bois B, Ndao S and Ickowicz A 2016. F-NIRS approach of the seasonal profile of CH4 emission of dairy herds in a agro sylvo pastoral ecosystem of sub-Saharan Africa (Kolda, Senegal). The 6th International Greenhouse Gas and Animal Agriculture (GGAA2016 special edition), Melbourne, Australia, p.1 poster.

  • Malik P K, Bhatta R, Takahashi J, Kohn R and Prasad CS (Eds.) 2015. Livestock production and climate change (Vol. 6). CABI, Boston, USA.

    Google Scholar 

  • Minson, DJ and McDonald, CK 1987. Estimating forage intake from the growth of beef cattle. Tropical Grasslands 21(3), 116-122.

    Google Scholar 

  • National Research Council (NRC) 1996. Nutrient Requirements of Beef Cattle, 7th Edit., Nat. Acad. Press, Washington, DC.

  • Ndao, S., Traoré, E-H, and Diop, M. 2018. Inventory practice: Sensitivity analysis to prioritize improvements in Senegal. Retrieved from https://www.agmrv.org/knowledge-portal/case-studies/inventory-practice-sensitivity-analysis-to-prioritize-improvements-in-senegal/.

  • Opio C, Gerber P, Mottet A, Falcucci A, Tempio G, MacLeod M, ... and Steinfeld H 2013. Greenhouse gas emissions from ruminant supply chains–A global life cycle assessment. Food and agriculture organization of the United Nations (FAO), Rome, 1-214.

  • Ouédraogo-Koné S, Kaboré-Zoungrana CY and Ledin I 2008. Intake and digestibility in sheep and chemical composition during different seasons of some West African browse species. Tropical Animal Health and Production, 40(2), 155-164.

    Article  Google Scholar 

  • Patra, A. K. (2017). Prediction of enteric methane emission from cattle using linear and non-linear statistical models in tropical production systems. Mitigation and adaptation strategies for global change, 22(4), 629-650.

    Article  Google Scholar 

  • Reid RS, Serneels S, Nyabenge M and Hanson J 2005. The changing face of pastoral systems in grass-dominated ecosystems of eastern Africa. Grasslands of the World, 19-76.

  • Salah N, Sauvant D and Archimède H 2015. Response of growing ruminants to diet in warm climates: a meta-analysis. animal 9, 822-830.

  • Schlecht E, Blümmel M and Becker K 1999. The influence of the environment on feed intake of cattle in semi-arid Africa. Regulation of feed intake’. (Eds D Van der Heide, EA Huisman, E Kanis, JWM Osse), MWA Verstegen 19, 167-185.

    Google Scholar 

  • Sejian V, Samal L, Haque N, Bagath M, Hyder, I, Maurya VP, ... Lal R 2015. Overview on Adaptation, Mitigation and Amelioration Strategies to Improve Livestock Production Under the Changing Climatic Scenario. In Climate Change Impact on Livestock: Adaptation and Mitigation (Vol. 22, pp. 359-397). Springer India.

  • Seré C and Steinfeld S 1996. World livestock production systems: current status, issues and trends. FAO Animal Production and Health Paper 127. Food and Agriculture Organization, Rome.

  • Shibata M and Terada F 2010. Factors affecting methane production and mitigation in ruminants. Animal Science Journal 81, 2-10.

    Article  CAS  Google Scholar 

  • Sissokho MM 1998. Cattle herd dynamics and performance under village husbandry in the Kolda region (Southern Senegal). MSc thesis, Oregon State University, Oregon, USA.

  • Tallec T, Klumpp K, Hensen A, Rochette Y and Soussana J.-F 2012. Methane emission measurements in a cattle grazed pasture: a comparison of four methods. biogeosciences 9, 14407-14436.

    Article  Google Scholar 

  • Tilman D and Clark M 2015. Food, Agriculture and the environment: Can we feed the world and save the Earth? Daedalus 144, 8-23.

    Article  Google Scholar 

Download references

Acknowledgements

The conception and discussions on this paper took place at the Mixed Research Unit on Livestock Systems in Mediterranean and Tropical Areas (SELMET, CIRAD - INRA - SupAgro). The West Africa Agricultural Productivity Program (WAAPP) Project supported by the World Bank provided funding. Special thanks go to the National coordinator of PROGEBE Senegal. We are also grateful to the staff of ISRA-CRZ Kolda for providing datasets and their valuable help. We also appreciate editorial and expert assistance from members of the GRA/LRG.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Ndao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 149 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ndao, S., Traoré, E.H., Ickowicz, A. et al. Estimation of enteric methane emission factors for Ndama cattle in the Sudanian zone of Senegal. Trop Anim Health Prod 52, 2883–2895 (2020). https://doi.org/10.1007/s11250-020-02280-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11250-020-02280-z

Keywords

Navigation