Skip to main content

Advertisement

Log in

Molecular Dynamics Study on the Mechanism of Improved Tribological Properties of Nano-ZnO with Decanol Lubrication

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

This study employs molecular dynamics simulation to examine the tribological behavior of nano zinc oxide (nano-ZnO) lubricated with decanol. The changes in electrostatic interaction energy, molecular structure, and chemical reactions during the friction process were analyzed. For ZnO-decanol-ZnO system, the simulation revealed a notable reduction in the coefficient of friction for nano-ZnO, decreasing from 0.49 (at 0.5 GPa and 100 m/s) to 0.18 (at 3 GPa and 20 m/s). This improvement is attributed to the enhanced adsorption ability and temperature stabilization provided by the decanol lubricant. Furthermore, an increase in velocity induces elastoplastic deformation and wear on the sliding surface, leading to a decline in tribological performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available on request.

References

  1. Yang, H., Huang, X., Duan, B., Wu, L., Wang, H., Feng, X., et al.: Dense dislocations induced ductile SnTe thermoelectric semiconductor over a wide range of temperatures. J. Mater. Sci. Technol. 144, 213–218 (2023). https://doi.org/10.1016/j.jmst.2022.11.003

    Article  CAS  Google Scholar 

  2. Liu, G., Luan, R., Qi, Y., Gong, L., Cao, J., Wang, Z., et al.: Organic Tribovoltaic nanogenerator with electrically and mechanically tuned flexible semiconductor textile. Nano Energy (2023). https://doi.org/10.1016/j.nanoen.2022.108075

    Article  PubMed  Google Scholar 

  3. Zhang, Q., Liu, J., Tu, C., Zhai, D., He, M., Lu, J.: High-performance β-Ga2O3 Schottky barrier diodes and metal-semiconductor field-effect transistors on a high doping level epitaxial layer. J. Alloys Compounds. (2023). https://doi.org/10.1016/j.jallcom.2023.168732

    Article  Google Scholar 

  4. Lei, H., Li, J., Kong, X., Wang, L., Peng, X.: Toward surface chemistry of semiconductor nanocrystals at an atomic-molecular level. Acc. Chem. Res. 56, 1966–1977 (2023). https://doi.org/10.1021/acs.accounts.3c00185

    Article  CAS  PubMed  Google Scholar 

  5. Huang, M.H., Mao, S., Feick, H., Yan, H., Wu, Y., Kind, H., et al.: Room-temperature ultraviolet nanowire nanolasers. Science 292, 1897–1899 (2001). https://doi.org/10.1126/science.1060367

    Article  CAS  PubMed  Google Scholar 

  6. Wang, Z.L., Song, J.: Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 312, 242–246 (2006). https://doi.org/10.1126/science.1124005

    Article  CAS  PubMed  Google Scholar 

  7. Yan, X., Dong, H., Li, Y., Lin, C., Park, C., He, D., et al.: Phase transition induced strain in ZnO under high pressure. Sci. Rep. 6, 24958 (2016). https://doi.org/10.1038/srep24958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. McCook, N.L., Boesl, B., Burris, D.L., Sawyer, W.G.: Epoxy, ZnO, and PTFE nanocomposite: friction and wear optimization. Tribol. Lett. 22, 253–257 (2006). https://doi.org/10.1007/s11249-006-9089-5

    Article  CAS  Google Scholar 

  9. Li, D., Wu, C., Ruan, L., Wang, J., Qiu, Z., Wang, K., et al.: Electron-transfer mechanisms for confirmation of contact-electrification in ZnO/polyimide-based triboelectric nanogenerators. Nano Energy (2020). https://doi.org/10.1016/j.nanoen.2020.104818

    Article  PubMed  PubMed Central  Google Scholar 

  10. Pietruszka, R., Witkowski, B.S., Zimowski, S., Stapinski, T., Godlewski, M.: Abrasion resistance of ZnO and ZnO: Al films on glass substrates by atomic layer deposition. Surf. Coat. Technol. 319, 164–169 (2017). https://doi.org/10.1016/j.surfcoat.2017.04.007

    Article  CAS  Google Scholar 

  11. Goto, M., Kasahara, A., Konishi, Y., Oishi, T., Tosa, M., Yoshihara, K.: Frictional property of zinc oxide coating films observed by lateral force microscopy. Jpn. J. Appl. Phys. 42, 4834–4836 (2003). https://doi.org/10.1143/jjap.42.4834

    Article  CAS  Google Scholar 

  12. Goto, M., Kasahara, A., Tosa, M.: Reduction in frictional force of ZnO coatings in a vacuum. Jpn. J. Appl. Phys. 47, 8914–8916 (2008). https://doi.org/10.1143/jjap.47.8914

    Article  CAS  Google Scholar 

  13. Prasad, S.V., Zabinski, J.S.: Tribological behavior of nanocrystalline zinc oxide films. Wear 203, 498–506 (1997). https://doi.org/10.1016/s0043-1648(96)07448-0

    Article  Google Scholar 

  14. Nainaparampil, J.J., Zabinski, J.S., Prasad, S.V.: Nanotribology of single crystal ZnO surfaces: restructuring at high temperature annealing. J. Vac. Sci. Technol., A: Vac., Surf. Films 17, 1787–1792 (1999). https://doi.org/10.1116/1.581891

    Article  CAS  Google Scholar 

  15. Prasad, S.V., Walck, S.D., Zabinski, J.S.: Microstructural evolution in lubricious ZnO films grown by pulsed laser deposition. Thin Solid Films 360, 107–117 (2000). https://doi.org/10.1016/s0040-6090(99)00880-9

    Article  CAS  Google Scholar 

  16. Chai, Z.M., Lu, X.C., He, D.N.: Atomic layer deposition of zinc oxide films: effects of nanocrystalline characteristics on tribological performance. Surf. Coat. Technol. 207, 361–366 (2012). https://doi.org/10.1016/j.surfcoat.2012.07.021

    Article  CAS  Google Scholar 

  17. Chai, Z.M., Liu, Y.H., Lu, X.C., He, D.N.: Reducing friction force of si material by means of atomic layer-deposited ZnO films. Tribol. Lett. 56, 67–75 (2014). https://doi.org/10.1007/s11249-014-0383-3

    Article  CAS  Google Scholar 

  18. Zhimin, C., Xinchun, L., He, D.: Friction mechanism of zinc oxide films prepared by atomic layer deposition. RSC Adv. 5, 55411–55418 (2015). https://doi.org/10.1039/C5RA05355B

    Article  CAS  Google Scholar 

  19. Chai, Z.M., Liu, Y.H., Lu, X.C., He, D.N.: Influence of crystal structure on friction coefficient of ZnO films prepared by atomic layer deposition. Sci. China Technol. Sci. 59, 506–512 (2016). https://doi.org/10.1007/s11431-015-5979-9

    Article  CAS  Google Scholar 

  20. Wang, J.H., Li, X.R., Deng, Y.Y., Chen, S.A., Liang, W.F., Zhang, L.X., et al.: Carbon quantum dots doped with silver as lubricating oil additive for enhancing tribological performance at various temperatures. Appl. Surface Sci. (2022). https://doi.org/10.1016/j.apsusc.2022.154029

    Article  Google Scholar 

  21. Cui, Y., Xue, S., Wang, S., Chen, X., Liu, S., Ye, Q., et al.: Fabrication of carbon dots intercalated MXene hybrids via laser treatment as oil-based additives for synergistic lubrication. Carbon 205, 373–382 (2023). https://doi.org/10.1016/j.carbon.2023.01.053

    Article  CAS  Google Scholar 

  22. Yagi, K., Nishida, K., Sugimura, J.: Relationship between the molecular structure of lubricants and appearance of anomalous film shapes in elastohydrodynamic lubrication conditions. Tribol. Int. (2020). https://doi.org/10.1016/j.triboint.2020.106574

    Article  Google Scholar 

  23. Liang, H., Xu, M., Bu, Y., Chen, B., Zhang, Y., Fu, Y., et al.: Confined interlayer water enhances solid lubrication performances of graphene oxide films with optimized oxygen functional groups. Appl. Surf. Sci. 485, 64–69 (2019). https://doi.org/10.1016/j.apsusc.2019.04.190

    Article  CAS  Google Scholar 

  24. Berman, D., Erdemir, A., Sumant, A.V.: Graphene: a new emerging lubricant. Mater. Today 17, 31–42 (2014). https://doi.org/10.1016/j.mattod.2013.12.003

    Article  CAS  Google Scholar 

  25. Qi, W., Huang, P., Chen, X., Jin, J., Luo, J.: Achieving controllable friction of ultrafine-grained graphite HPG510 by tailoring the interfacial nanostructures. Appl. Surface Sci. (2020). https://doi.org/10.1016/j.apsusc.2020.145731

    Article  Google Scholar 

  26. He, X., Ngo, D., Kim, S.H.: Mechanochemical reactions of adsorbates at tribological interfaces: tribopolymerizations of allyl alcohol coadsorbed with water on silicon oxide. Langmuir 35, 15451–15458 (2019). https://doi.org/10.1021/acs.langmuir.9b01663

    Article  CAS  PubMed  Google Scholar 

  27. Wang, M., Duan, F., Mu, X.: Effect of surface silanol groups on friction and wear between amorphous silica surfaces. Langmuir 35, 5463–5470 (2019). https://doi.org/10.1021/acs.langmuir.8b04291

    Article  CAS  PubMed  Google Scholar 

  28. Fu, X., Cao, L., Qi, C., Wan, Y., Xu, C.: Ultralow friction of PVD TiN coating in the presence of glycerol as a green lubricant. Ceram. Int. 46, 24302–24311 (2020). https://doi.org/10.1016/j.ceramint.2020.06.211

    Article  CAS  Google Scholar 

  29. Ma, Q., Wang, W., Dong, G.: Achieving macroscale liquid superlubricity using lubricant mixtures of glycerol and propanediol. Tribol. Lett. (2021). https://doi.org/10.1007/s11249-021-01519-6

    Article  Google Scholar 

  30. Yagi, K., Sugimura, J., Vergne, P.: Rheological response of fatty alcohols in sliding elastohydrodynamic contacts. Tribol. Int. 49, 58–66 (2012). https://doi.org/10.1016/j.triboint.2011.12.012

    Article  CAS  Google Scholar 

  31. Chen, M.-Y., Hong, Z.-H., Fang, T.-H., Kang, S.-H.: Molecular dynamics simulation of nanoscale mechanical behaviour of ZnO under nanoscratching and nanoindentation. Mol. Phys. 112, 3152–3164 (2014). https://doi.org/10.1080/00268976.2014.933900

    Article  CAS  Google Scholar 

  32. Liu, D.J., Li, H.P., Huo, L.X., Wang, K., Sun, K., Wei, J.J., et al.: Molecular dynamics simulation of the lubricant conformation changes and energy transfer of the confined thin lubricant film. Chem. Eng. Sci. (2023). https://doi.org/10.1016/j.ces.2023.118541

    Article  Google Scholar 

  33. Xu, Q., Zhang, J., Li, X., van Duin, D.M., Hu, Y., van Duin, A.C.T., et al.: How polytetrafluoroethylene lubricates iron: an atomistic view by reactive molecular dynamics. ACS Appl. Mater. Interfaces 14, 6239–6250 (2022). https://doi.org/10.1021/acsami.1c23950

    Article  CAS  PubMed  Google Scholar 

  34. Thompson, A.P., Aktulga, H.M., Berger, R., Bolintineanu, D.S., Brown, W.M., Crozier, P.S., et al.: LAMMPS - a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales. Comput. Phys. Commun. (2022). https://doi.org/10.1016/j.cpc.2021.108171

    Article  Google Scholar 

  35. Sengul, M.Y., Randall, C.A., van Duin, A.C.T.: ReaxFF molecular dynamics study on the influence of temperature on adsorption, desorption, and decomposition at the acetic acid/water/ZnO(101̅0) interface enabling cold sintering. ACS Appl. Mater. Interfaces 10, 37717–37724 (2018). https://doi.org/10.1021/acsami.8b13630

    Article  CAS  PubMed  Google Scholar 

  36. Nosé, S.: A molecular dynamics method for simulations in the canonical ensemble. Mol. Phys. 52, 255–268 (2006). https://doi.org/10.1080/00268978400101201

    Article  Google Scholar 

  37. Berendsen, H.J.C., Postma, J.P.M., van Gunsteren, W.F., DiNola, A., Haak, J.R.: Molecular dynamics with coupling to an external bath. J. Chem. Phys. 81, 3684–3690 (1984). https://doi.org/10.1063/1.448118

    Article  CAS  Google Scholar 

  38. Yuan, S., Guo, X., Li, P., Zhang, S., Li, M., Jin, Z., et al.: Atomistic understanding of interfacial processing mechanism of silicon in water environment: A ReaxFF molecular dynamics simulation. Front. Mech. Eng. 16, 570–579 (2021). https://doi.org/10.1007/s11465-021-0642-6

    Article  Google Scholar 

  39. Wang, Y.Z., Yin, Z.Y., Fan, D.K., Bai, L.C.: Friction behaviors of DLC films in an oxygen environment: An atomistic understanding from ReaxFF simulations. Tribol. Int. (2022). https://doi.org/10.1016/j.triboint.2022.107448

    Article  Google Scholar 

  40. Rappe, A.K., Goddard, W.A.: Charge equilibration for molecular dynamics simulations. J. Phys. Chem. 95, 3358–3363 (2002). https://doi.org/10.1021/j100161a070

    Article  Google Scholar 

  41. Todd BD, Daivis PJ. Nonequilibrium Molecular Dynamics2017.

  42. Song, J., Zhao, G.: A molecular dynamics study on water lubrication of PTFE sliding against copper. Tribol. Int. 136, 234–239 (2019). https://doi.org/10.1016/j.triboint.2019.03.070

    Article  CAS  Google Scholar 

  43. Hu, Y.-Z., Ma, T.-B., Wang, H.: Energy dissipation in atomic-scale friction. Friction 1, 24–40 (2013). https://doi.org/10.1007/s40544-013-0002-6

    Article  Google Scholar 

  44. Zhao, G., Wang, G., Song, J., Ding, Q.: Water molecular lubrication of PTFE through carbon nanotube. Tribol. Int. (2023). https://doi.org/10.1016/j.triboint.2023.108564

    Article  Google Scholar 

  45. Yin, Y., Ma, L., Xu, X., Tian, Y., Wen, S., Luo, J.: Thinning of glycerol in the presence of multi-walled carbon nanotubes. J. Chem. Phys. (2019). https://doi.org/10.1063/1.5098831

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support from the National Natural Science Foundation of China (Project Nos. 51601021).

Funding

Funding was supported by the National Natural Science Foundation of China (Project Nos. 51601021).

Author information

Authors and Affiliations

Authors

Contributions

Min Ji ,Yaowen Chen, Lin Liu, and Feichi Zhang wrote the main manuscript text. Yaowen Chen, Jing Li,Yujie Zhao, and Zhen Zhang made the simulations. Ying Wang and Haijun Pan prepared figures. All authors reviewed the manuscript.

Corresponding author

Correspondence to Lin Liu.

Ethics declarations

Conflict of interest

All authors declare that (i) all support funding have been marked in the manuscript; and (ii) there are no other relationships or activities that could appear to have influenced the submitted work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ji, M., Chen, Y., Wang, Y. et al. Molecular Dynamics Study on the Mechanism of Improved Tribological Properties of Nano-ZnO with Decanol Lubrication. Tribol Lett 72, 42 (2024). https://doi.org/10.1007/s11249-024-01840-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11249-024-01840-w

Keywords

Navigation