Skip to main content

Advertisement

Log in

Multi-scale Friction Simulation and Experimental Verification of Carbon Nanotube-Reinforced PTFE Composites

  • Research
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

The synergistic analysis of friction properties of carbon nanotube (CNT)-reinforced polymers at the nanoscale and macroscale can help to obtain the intrinsic mechanism of carbon nanotubes to reduce the friction coefficient of polymers, which is important to guide the modification of polymer friction properties. However, the huge gap in spatial scales makes it difficult for molecular dynamics (MD) simulations at the nanoscale to predict the friction coefficient of virtual contact interfaces, and conducting a large number of macroscopic experiments to obtain natural frictional laws could be more efficient. This study proposes a multi-scale model to investigate the frictional behavior of copper (Cu)-CNT/polytetrafluoroethylene (PTFE). By using the micromechanics Mori–Tanaka homogenization method as a bridge, the nanoscale simulations of the CNT/PTFE elasticity and frictional behavior and the macroscopic finite element simulation of the Cu ring-CNT/PTFE block contact are coupled, thus integrating the nanoscale frictional laws of Cu-CNT/PTFE obtained from molecular dynamics simulations into the actual contact interface. The results of multi-scale friction simulations show that the filling of CNTs can effectively improve the elastic and frictional properties of the PTFE matrix, and the degree of improvement is related to the orientation and mass fraction of the CNTs. Under a mean contact pressure of 0.5 MPa and a rotating speed of 30 rpm, the friction coefficient continuously decreases (from 0.198 to 0.156) with increasing CNTs mass fraction (0%, 1.25%, 2.5%, 5%). The simulation results were verified by copper ring-CNT/PTFE block friction experiments.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author, [Ce Liang], upon reasonable request.

References

  1. Gayathri, N., Shanmuganathan, V.K., Joyson, A., Aakash, M., Godwin Joseph, A.: Mechanical properties investigation on natural fiber reinforced epoxy polymer composite. Mater. Today Proc. 72, 2574–2580 (2023). https://doi.org/10.1016/j.matpr.2022.10.121

    Article  CAS  Google Scholar 

  2. Handoul, K.A., Taher, A.A.: Enhancement mechanical properties of polymers reinforcing by nano graphene. Mater. Sci. Forum. 1077, 99–106 (2022). https://doi.org/10.4028/p-93k88e

    Article  Google Scholar 

  3. Namathoti, S., Vakkalagadda, M.R.K.: Development of multiwalled carbon nanotubes/halloysite nanotubes reinforced thermal responsive shape memory polymer nanocomposites for enhanced mechanical and shape recovery characteristics in 4D printing applications. Polymers 15, 1371 (2023). https://doi.org/10.3390/polym15061371

    Article  CAS  Google Scholar 

  4. George, J., Jung, D., Bhattacharyya, D.: Improvement of electrical and mechanical properties of PLA/PBAT composites using coconut shell biochar for antistatic applications. Appl. Sci. 13, 902 (2023). https://doi.org/10.3390/app13020902

    Article  CAS  Google Scholar 

  5. Huo, Y., Lin, C., Ge, H., Ying, P., Huang, M., Zhang, P., Yang, T., Wang, T., Wu, J., Yan, Y., Levchenko, V.: Polyurethane/MoS2 composites: gas barrier, hygrothermal aging and recycling. J. Polym. Res. 30, 38 (2023). https://doi.org/10.1007/s10965-022-03418-3

    Article  CAS  Google Scholar 

  6. Chen, Y., Zhang, J., Wang, L., Tian, Q., Wu, J., Li, P., Chen, A., Huang, S., Lei, C.: Tribological behavior of carbon-fiber-reinforced polymer with highly oriented graphite nanoplatelets. Tribol. Int. 186, 108577 (2023). https://doi.org/10.1016/j.triboint.2023.108577

    Article  CAS  Google Scholar 

  7. Atta, A.M., Behiry, R.N., Haraz, M.I.: Upgrading the hanger resistance of RC inverted T-girders using externally bonded carbon fiber reinforced polymers (EB-CFRP). Structures 53, 1557–1581 (2023). https://doi.org/10.1016/j.istruc.2023.05.029

    Article  Google Scholar 

  8. Naito, K., Nakamura, M., Matsuoka, T.: Friction and wear properties of polyacrylonitrile- and pitch-based carbon fiber-reinforced polymer matrix composites containing silicon carbide nanoparticles. Polym. Compos. 44, 2405–2416 (2023). https://doi.org/10.1002/pc.27252

    Article  CAS  Google Scholar 

  9. Iijima, S.: Helical microtubules of graphitic carbon. Nature 354, 56–58 (1991). https://doi.org/10.1038/354056a0

    Article  CAS  Google Scholar 

  10. Ruoff, R.S., Lorents, D.C.: Mechanical and thermal properties of carbon nanotubes. Carbon 33, 925–930 (1995). https://doi.org/10.1016/0008-6223(95)00021-5

    Article  CAS  Google Scholar 

  11. Makowiec, M.E., Blanchet, T.A.: Improved wear resistance of nanotube- and other carbon-filled PTFE composites. Wear 374–375, 77–85 (2017). https://doi.org/10.1016/j.wear.2016.12.027

    Article  CAS  Google Scholar 

  12. Aili, Z.: Dongsheng, Li: Effect of Carbon Nanotube on the Oscillating Wear Behaviour of Metal-PTFE Multilayer Composites. J. Wuhan Univ. Technol. Materscied. (2018). https://doi.org/10.1007/s11595-018-1962-1

    Article  Google Scholar 

  13. Chen, W.X., Li, F., Han, G., Xia, J.B., Wang, L.Y., Tu, J.P., Xu, Z.D.: Tribological behavior of carbon-nanotube-filled PTFE composites. Tribol. Lett. 15, 275–278 (2003). https://doi.org/10.1023/A:1024869305259

    Article  CAS  Google Scholar 

  14. Vail, J.R., Burris, D.L., Sawyer, W.G.: Multifunctionality of single-walled carbon nanotube–polytetrafluoroethylene nanocomposites. Wear 267, 619–624 (2009). https://doi.org/10.1016/j.wear.2008.12.117

    Article  CAS  Google Scholar 

  15. Cui, Y., Li, C., Li, Z., Yao, X., Hao, W., Xing, S., Xie, Y., Meng, X., Wan, L., Huang, Y.: Deformation-driven processing of CNTs/PEEK composites towards wear and tribology applications. Coatings 12, 983 (2022). https://doi.org/10.3390/coatings12070983

    Article  CAS  Google Scholar 

  16. Li, M.X., Deng, X.Q., Guo, P.K., Xu, P., Tian, H.Y.: Tribological properties and mechanism of carbon nanotubes in grease. Lubr. Eng. 44, 120–126 (2019). https://doi.org/10.3969/j.issn.0254-0150,2019.04.020

    Article  CAS  Google Scholar 

  17. Yan, S., Xue, Y.: Surface wettability, tensile mechanical performance, and tribological behavior of polyimide/polytetrafluoroethylene blends enhanced with hydroxylated multiwalled carbon nanotubes at high relative humidity. Polym. Compos. 42, 4517–4532 (2021). https://doi.org/10.1002/pc.26165

    Article  CAS  Google Scholar 

  18. Goriparthi, B.K., Naveen, P.N.E., Ravi Sankar, H., Ghosh, S.: Effect of functionalization and concentration of carbon nanotubes on mechanical, wear and fatigue behaviours of polyoxymethylene/carbon nanotube nanocomposites. Bull. Mater. Sci. 42, 98 (2019). https://doi.org/10.1007/s12034-019-1746-z

    Article  CAS  Google Scholar 

  19. Cheng, H., Cheng, X.: Mechanical and tribological behavior of polytetrafluoroethylene composites reinforced by carbon nanotubes and poly- p -oxybenzoate. High Perform. Polym. 25, 611–621 (2013). https://doi.org/10.1177/0954008313477120

    Article  CAS  Google Scholar 

  20. Kutelia, E., Darsavelidze, G., Dzigrashvili, T., Gventsadze, D., Tsurtsumia, O., Gventsadze, L., Kukava, T., Rukhadze, L., Nadaraia, L., Kurashvili, I.: The inelastic/elastic and tribological properties of ptfe-based nanocomposites filled with co cluster-doped CNTs. Bull. Georgian Natl. Acad. Sci. 14 (2020)

  21. Zhilin, C., Baochong, C., Zan, L., Dunzhong, Q., Aiping, Z.: An approach for preparation of excellent antiwear PTFE nanocomposites by filling as-prepared carbon nanotubes/nanorods(CNT/CNR) mixed nano-carbon material. China Pet. Process. Petrochem. Technol. 20, 34–40 (2018)

    Google Scholar 

  22. Islam, K., Saha, S., Masud, A.K.M.: Molecular dynamics simulation of the mechanical properties of CNT-polyoxymethylene composite with a reactive forcefield. Mol. Simul. 46, 380–387 (2020). https://doi.org/10.1080/08927022.2020.1711904

    Article  CAS  Google Scholar 

  23. Brownell, M., Nair, A.K.: Deformation mechanisms of polytetrafluoroethylene at the nano- and microscales. Phys. Chem. Chem. Phys. 21, 490–503 (2019). https://doi.org/10.1039/C8CP05111A

    Article  CAS  Google Scholar 

  24. Okada, O., Oka, K., Kuwajima, S., Tanabe, K.: Molecular dynamics studies of amorphous poly(tetrafluoroethylene). Mol. Simul. 21, 325–342 (1999). https://doi.org/10.1080/08927029908022072

    Article  CAS  Google Scholar 

  25. Pan, D., Zhu, K., Zhang, Y., Sun, L., Hao, X.: First principles and molecular dynamics simulation investigation of mechanical properties of the PTFE/graphene composites. Composite B 242, 110050 (2022). https://doi.org/10.1016/j.compositesb.2022.110050

    Article  CAS  Google Scholar 

  26. Chiu, P.Y., Barry, P.R., Perry, S.S., Sawyer, W.G., Phillpot, S.R., Sinnott, S.B.: Influence of the molecular level structure of polyethylene and polytetrafluoroethylene on their tribological response. Tribol. Lett. 42, 193–201 (2011). https://doi.org/10.1007/s11249-011-9763-0

    Article  CAS  Google Scholar 

  27. Pan, D., Fan, B., Qi, X., Yang, Y., Hao, X.: Investigation of PTFE tribological properties using molecular dynamics simulation. Tribol. Lett. 67, 28 (2019). https://doi.org/10.1007/s11249-019-1141-3

    Article  CAS  Google Scholar 

  28. Xu, M., Wang, T., Wang, Q., Zhang, X., Tao, L., Li, S.: Mechanical and tribological properties of polytetrafluoroethylene reinforced by nano-ZrO 2: molecular dynamic simulation. High Perform. Polym. 34, 397–405 (2022). https://doi.org/10.1177/09540083211072740

    Article  CAS  Google Scholar 

  29. Song, J., Zhao, G., Ding, Q., Yang, Y.: Effect of SiO 2 on the tribological properties of PTFE sliding against Cu: a molecular dynamics simulation. Ind. Lubr. Tribol. 74, 774–779 (2022). https://doi.org/10.1108/ILT-12-2021-0470

    Article  Google Scholar 

  30. Barry, P.R., Jang, I., Perry, S.S., Sawyer, W.G., Sinnott, S.B., Phillpot, S.R.: Effect of simulation conditions on friction in polytetrafluoroethylene (PTFE). J. Comput. Aid. Mater. Des. 14, 239–246 (2007). https://doi.org/10.1007/s10820-007-9087-4

    Article  CAS  Google Scholar 

  31. Barry, P.R., Chiu, P.Y., Perry, S.S., Sawyer, W.G., Sinnott, S.B., Phillpot, S.R.: Effect of temperature on the friction and wear of PTFE by atomic-level simulation. Tribol. Lett. 58, 50 (2015). https://doi.org/10.1007/s11249-015-0529-y

    Article  CAS  Google Scholar 

  32. Barry, P.R., Chiu, P.Y., Perry, S.S., Sawyer, W.G., Phillpot, S.R., Sinnott, S.B.: Effect of fluorocarbon molecules confined between sliding self-mated PTFE surfaces. Langmuir 27, 9910–9919 (2011). https://doi.org/10.1021/la201269c

    Article  CAS  Google Scholar 

  33. Song, J., Zhao, G.: A molecular dynamics study on water lubrication of PTFE sliding against copper. Tribol. Int. 136, 234–239 (2019). https://doi.org/10.1016/j.triboint.2019.03.070

    Article  CAS  Google Scholar 

  34. Song, H.: Improved mechanical and tribological properties of polytetrafluoroethylene reinforced by carbon nanotubes: a molecular dynamics study. Comput. Mater. Sci. 168, 131–136 (2019)

    Article  CAS  Google Scholar 

  35. Xu, Q., Zhang, J., Li, X., van Duin, D.M., Hu, Y., van Duin, A.C.T., Ma, T.: How polytetrafluoroethylene lubricates iron: an atomistic view by reactive molecular dynamics. ACS Appl. Mater. Interfaces 14, 6239–6250 (2022). https://doi.org/10.1021/acsami.1c23950

    Article  CAS  Google Scholar 

  36. Xu, Q., Zhang, J., Hu, Y.Z., Ma, T.B.: Tribological behavior of poly(tetrafluoroethylene) (PTFE) and its composites reinforced by carbon nanotubes and graphene sheets: molecular dynamics simulation. Phys. Status Solidi RRL (2021). https://doi.org/10.1002/pssr.202100298

    Article  Google Scholar 

  37. Pan, D., Wang, H., Sun, L., Zhu, K., Hao, X.: Effect of temperature on Fe-polytetrafluoroethylene friction coefficient using molecular dynamics simulation. Tribol. Trans. 65, 705–715 (2022)

    Article  CAS  Google Scholar 

  38. Xu, M., Wang, Q., Wang, T., Tao, L., Li, S.: Molecular dynamic simulation study of tribological mechanism of PI composites reinforced by CNTs with different orientations. Polym. Compos. (2022). https://doi.org/10.1002/pc.26476

    Article  Google Scholar 

  39. Yu, B., Fu, S., Wu, Z., Bai, H., Ning, N., Fu, Q.: Molecular dynamics simulations of orientation induced interfacial enhancement between single walled carbon nanotube and aromatic polymers chains. Compos. Part Appl. Sci. Manuf. (2015). https://doi.org/10.1016/j.compositesa.2015.02.027

    Article  Google Scholar 

  40. von Goeldel, S., Reichenbach, T., König, F., Mayrhofer, L., Moras, G., Jacobs, G., Moseler, M.: A combined experimental and atomistic investigation of PTFE double transfer film formation and lubrication in rolling point contacts. Tribol. Lett. 69, 136 (2021). https://doi.org/10.1007/s11249-021-01508-9

    Article  CAS  Google Scholar 

  41. Pan, D., Liu, C., Qi, X., Yang, Y., Hao, X.: A tribological application of the coarse-grained molecular dynamics simulation and its experimental verification. Tribol. Int. 133, 32–39 (2018). https://doi.org/10.1016/j.triboint.2018.12.040

    Article  CAS  Google Scholar 

  42. Savio, D., Hamann, J., Romero, P.A., Klingshirn, C., Bactavatchalou, R., Dienwiebel, M., Moseler, M.: Multiscale friction simulation of dry polymer contacts: reaching experimental length scales by coupling molecular dynamics and contact mechanics. Tribol. Lett. 69, 70 (2021). https://doi.org/10.1007/s11249-021-01444-8

    Article  CAS  Google Scholar 

  43. Jang, I., Burris, D.L., Dickrell, P.L., Barry, P.R., Sawyer, W.G.: Sliding orientation effects on the tribological properties of polytetrafluoroethylene. J. Appl. Phys. 102, 617 (2007). https://doi.org/10.1063/1.2821743

    Article  CAS  Google Scholar 

  44. Lim, W.-S., Khadem, M., Anle, Y., Kim, D.-E.: Fabrication of polytetrafluoroethylene-carbon nanotube composite coatings for friction and wear reduction. Polym. Compos. 39, E710–E722 (2018). https://doi.org/10.1002/pc.24135

    Article  CAS  Google Scholar 

  45. Rungraeng, N., Cho, Y.-C., Yoon, S.H., Jun, S.: Carbon nanotube-polytetrafluoroethylene nanocomposite coating for milk fouling reduction in plate heat exchanger. J. Food Eng. 111, 218–224 (2012). https://doi.org/10.1016/j.jfoodeng.2012.02.032

    Article  CAS  Google Scholar 

  46. Wang, K., Pan, X., Xu, X., Kan, W., Li, Y.L., Zheng, Y.: Chemically robust carbon nanotube-PTFE superhydrophobic thin films with enhanced ability of wear resistance. Prog. Nat. Sci. Int. 27, 112–115 (2017). https://doi.org/10.1016/j.pnsc.2017.04.004

    Article  CAS  Google Scholar 

  47. Bhadra, M., Roy, S., Mitra, S.: Flux enhancement in direct contact membrane distillation by implementing carbon nanotube immobilized PTFE membrane. Sep. Purif. Technol. 161, 136–143 (2016). https://doi.org/10.1016/j.seppur.2016.01.046

    Article  CAS  Google Scholar 

  48. Zhang, H., Zhang, Z., Guo, F., Wang, K., Jiang, W.: Enhanced wear properties of hybrid PTFE/cotton fabric composites filled with functionalized multi-walled carbon nanotubes. Mater. Chem. Phys. 116, 183–190 (2009). https://doi.org/10.1016/j.matchemphys.2009.03.008

    Article  CAS  Google Scholar 

  49. Mori, T., Tanaka, K.: Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metall. 21, 571–574 (1973). https://doi.org/10.1016/0001-6160(73)90064-3

    Article  Google Scholar 

  50. Zhu, F., Park, C., Jin Yun, G.: An extended Mori-Tanaka micromechanics model for wavy CNT nanocomposites with interface damage. Mech. Adv. Mater. Struct. 28, 295–307 (2021). https://doi.org/10.1080/15376494.2018.1562135

    Article  CAS  Google Scholar 

  51. Domínguez-Rodríguez, G., Chaurasia, A., Seidel, G., Tapia, A., Avilés, F.: Hierarchical multiscale modeling of the effect of carbon nanotube damage on the elastic properties of polymer nanocomposites. J. Mech. Mater. Struct. 12, 263–287 (2017). https://doi.org/10.2140/jomms.2017.12.263

    Article  Google Scholar 

  52. Alian, A.R., Kundalwal, S.I., Meguid, S.A.: Multiscale modeling of carbon nanotube epoxy composites. Polymer 70, 149–160 (2015). https://doi.org/10.1016/j.polymer.2015.06.004

    Article  CAS  Google Scholar 

  53. Plimpton, S.: Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1–19 (1995). https://doi.org/10.1006/jcph.1995.1039

    Article  CAS  Google Scholar 

  54. Haghighatpanah, S., Bolton, K.: Molecular-level computational studies of single wall carbon nanotube–polyethylene composites. Comput. Mater. Sci. 69, 443–454 (2013). https://doi.org/10.1016/j.commatsci.2012.12.012

    Article  CAS  Google Scholar 

  55. Siepmann, J.I., Mcdonald, I.R.: Monte Carlo simulation of the mechanical relaxation of a self-assembled monolayer. Phys. Rev. Lett. 70, 453 (1993). https://doi.org/10.1103/physrevlett.70.453

    Article  CAS  Google Scholar 

  56. Iljasiepmann, J., Mcdonald, Ianr.: Monte Carlo simulations of mixed monolayers. Mol. Phys. 75, 255–259 (1992). https://doi.org/10.1080/00268979200100201

  57. Li, Y., Wang, S., Wang, Q., Xing, M.: Molecular dynamics simulations of tribology properties of NBR (Nitrile-Butadiene Rubber)/carbon nanotube composites. Composite B 97, 62–67 (2016). https://doi.org/10.1016/j.compositesb.2016.04.053

    Article  CAS  Google Scholar 

  58. Eshelby, J.D.: The elastic field outside an ellipsoidal inclusion. Proc. R. Soc. Lond. 252, 561–569 (1959). https://doi.org/10.1098/rspa.1959.0173

    Article  Google Scholar 

  59. Marzari, N., Ferrari, M.: Textural and micromorphological effects on the overall elastic response of macroscopically anisotropic composites. J. Appl. Mech. 59, 269–275 (1992). https://doi.org/10.1115/1.2899516

    Article  Google Scholar 

  60. Nackenhorst, U.: The ALE-formulation of bodies in rolling contact. Comput. Methods Appl. Mech. Eng. 193, 4299–4322 (2004). https://doi.org/10.1016/j.cma.2004.01.033

    Article  Google Scholar 

  61. Riva, G., Varriale, F., Wahlström, J.: A finite element analysis (FEA) approach to simulate the coefficient of friction of a brake system starting from material friction characterization. Friction. 9, 191–200 (2021). https://doi.org/10.1007/s40544-020-0397-9

    Article  Google Scholar 

  62. Rae, P.J., Brown, E.N.: The properties of poly(tetrafluoroethylene) (PTFE) in tension. Polymer 46, 8128–8140 (2005). https://doi.org/10.1016/j.polymer.2005.06.120

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study is supported by the Defense Foundation Enhancement Program, Grant Number [2020-XXJQ-ZD-20X].

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation and analysis were performed by XW and XY. The first draft of the manuscript was written by CL and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Ce Liang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, C., Shuai, C., Yang, X. et al. Multi-scale Friction Simulation and Experimental Verification of Carbon Nanotube-Reinforced PTFE Composites. Tribol Lett 71, 87 (2023). https://doi.org/10.1007/s11249-023-01761-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11249-023-01761-0

Keywords

Navigation