Skip to main content
Log in

Novel Phosphate Organic Guanidine Salt Water-Based Additive with Integrated Anti-Friction, Anti-Wear and Anti-Corrosion Properties

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

Two new phosphate organic guanidine salt water-based additives (P4-G, P8-G) were synthesized, and their tribological properties and anti-corrosion performance were investigated. Friction tests revealed the lubricity and anti-wear performance of P8-G to be superior to that of P4-G. Moreover, it had good anti-corrosion properties. In addition, the P8-G as the water-based lubricant additives have better friction-reducing, extreme-pressure and anti-wear properties than a commercial water-based lubricant additive of CCFS. The Three-dimensional profile, scanning electron microscope, and X-ray photoelectron spectroscopy were used to analyze the wear spot surface and clarify the friction mechanism. Overall, P8-G was found to exhibit excellent anti-friction and anti-wear properties, which can be attributed to its excellent adsorption properties on the metal surface and the tribochemical reactions with metal substrates to form stable tribochemical reaction films. More importantly, the system is pollution-free and is expected to develop into a highly efficient lubricant additive applied in water-based hydraulic fluids, which serves as a guide for the design and synthesis of water-based additives.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Skela, B., Sedlaček, M., Kafexhiu, F., Podgornik, B.: Influence of microstructure and mechanical properties of hot-work tool steel on wear resistance subjected to high-stress wear conditions. Tribol. Lett. 68, 1–12 (2020). https://doi.org/10.1007/s11249-020-01300-1

    Article  CAS  Google Scholar 

  2. Yin, Y., Yu, H., Wang, H., Song, Z., Zhang, Z., Ji, X., et al.: Friction and wear behaviors of steel/bronze tribopairs lubricated by oil with serpentine natural mineral additive. Wear 456–457, 203387 (2020). https://doi.org/10.1016/j.wear.2020.203387

    Article  CAS  Google Scholar 

  3. Wang, L., Tieu, A.K., Zhu, H., Deng, G., Cui, S., Zhu, Q.: A study of water-based lubricant with a mixture of polyphosphate and nano-TiO2 as additives for hot rolling process. Wear 477, 203895 (2021). https://doi.org/10.1016/j.wear.2021.203895

    Article  CAS  Google Scholar 

  4. Fan, Z.Y., Xiang, Z.Y., Tang, B., Chen, W., Zhou, Z.R.: Effect of surface modification on the tribological properties of friction blocks in high-speed train brake systems. Tribol. Lett. (2021). https://doi.org/10.1007/s11249-021-01402-4

    Article  Google Scholar 

  5. Kong, S., Wang, J., Hu, W., Li, J.: Effects of thickness and particle size on tribological properties of graphene as lubricant additive. Tribol. Lett. 68, 1–10 (2020). https://doi.org/10.1007/s11249-020-01351-4

    Article  CAS  Google Scholar 

  6. Yang, Z., Sun, C., Zhang, C., Zhao, S., Cai, M., Liu, Z., et al.: Amino acid ionic liquids as anticorrosive and lubricating additives for water and their environmental impact. Tribol. Int. 153, 106663 (2021). https://doi.org/10.1016/j.triboint.2020.106663

    Article  CAS  Google Scholar 

  7. Roy, S., Jr, L.S., Viola, M., Luo, H., Leonard, D., Qu, J.: Oil miscible phosphonium-phosphate ionic liquid as novel antiwear and antipitting additive for low-viscosity rear axle lubricants. Wear 466–467, 203588 (2021). https://doi.org/10.1016/j.wear.2020.203588

  8. Nevosad, A., Azhaarudeen, S., Rojacz, H.: Tribological interaction of manganese phosphate coatings with grease and solid lubricant particles. Tribol. Lett. 68, 1–10 (2020). https://doi.org/10.1007/s11249-019-1258-4

    Article  CAS  Google Scholar 

  9. Li, W., Yang, Z., Zha, F., Li, Z., Wang, J.: Preparation of well-dispersed lubricant additives with excellent antiwear ability under high load. Tribol. Lett. 68, 1–11 (2020). https://doi.org/10.1007/s11249-020-01335-4

    Article  CAS  Google Scholar 

  10. Xie, H., Dang, S., Jiang, B., Xiang, L., Zhou, S., Sheng, H., et al.: Tribological performances of SiO2/graphene combinations as water-based lubricant additives for magnesium alloy rolling. Appl. Surf. Sci. 475, 847–856 (2019). https://doi.org/10.1016/j.apsusc.2019.01.062

    Article  CAS  Google Scholar 

  11. Xie, H., Jiang, B., Dai, J., Peng, C., Li, C., Li, Q., et al.: Tribological behaviors of graphene and graphene oxide as water-based lubricant additives for magnesium alloy/steel contacts. Materials 11, 206 (2018). https://doi.org/10.3390/ma11020206

    Article  CAS  Google Scholar 

  12. Gan, C., Liang, T., Li, X., Li, W., Li, H., Fan, X., et al.: Ultra-dispersive monolayer graphene oxide as water-based lubricant additive: Preparation, characterization and lubricating mechanisms. Tribol. Int. 155, 106768 (2021). https://doi.org/10.1016/j.triboint.2020.106768

    Article  CAS  Google Scholar 

  13. Xie, Z., Zhu, W.: Theoretical and experimental exploration on the micro asperity contact load ratios and lubrication regimes transition for water-lubricated stern tube bearing. Tribol. Int. 164, 107105 (2021). https://doi.org/10.1016/j.triboint.2021.107105

    Article  Google Scholar 

  14. Liu, Y., Liu, P., Che, L., Shu, C., Lu, X.: Tunable tribological properties in water-based lubrication of water-soluble fullerene derivatives via varying terminal groups. Chin. Sci. Bull. 57, 4641–4645 (2012). https://doi.org/10.1007/s11434-012-5515-2

    Article  CAS  Google Scholar 

  15. He, A., Huang, S., Yun, J., Wu, H., Jiang, Z., Stokes, J., et al.: Tribological performance and lubrication mechanism of alumina nanoparticle water-based suspensions in ball-on-three-plate testing. Tribol. Lett. 65, 40 (2017). https://doi.org/10.1007/s11249-017-0823-y

    Article  CAS  Google Scholar 

  16. Cho, D.-H., Kim, J.-S., Kwon, S.-H., Lee, C., Lee, Y.-Z.: Evaluation of hexagonal boron nitride nano-sheets as a lubricant additive in water. Wear 302, 981–986 (2013). https://doi.org/10.1016/j.wear.2012.12.059

    Article  CAS  Google Scholar 

  17. Phillips, B., Zabinski, J.: Ionic liquid lubrication effects on ceramics in a water environment. Tribol. Lett. 17, 533–541 (2004). https://doi.org/10.1023/B:TRIL.0000044501.64351.68

    Article  CAS  Google Scholar 

  18. Qiang, R., Hu, L., Hou, K., Wang, J., Yang, S.: Water-soluble graphene quantum dots as high-performance water-based lubricant additive for steel/steel contact. Tribol. Lett. 67, 1–9 (2019). https://doi.org/10.1007/s11249-019-1177-4

    Article  CAS  Google Scholar 

  19. Zhao, J., Yang, G., Zhang, Y., Zhang, S., Zhang, P.: A simple preparation of HDA-CuS nanoparticles and their tribological properties as a water-based lubrication additive. Tribol. Lett. 67, 1–11 (2019). https://doi.org/10.1007/s11249-019-1206-3

    Article  CAS  Google Scholar 

  20. Yang, D., Du, X., Li, W., Han, Y., Ma, L., Fan, M., et al.: Facile preparation and tribological properties of water-based naphthalene dicarboxylate ionic liquid lubricating additives. Tribol. Lett. 68, 1–11 (2020). https://doi.org/10.1007/s11249-020-01323-8

    Article  CAS  Google Scholar 

  21. Anggraini, Y., Sutjahja, I., Kurnia, D., Viridi, S.: Effects of anion and alkyl chain length of cation on the thermophysical properties of imidazolium-based ionic liquid. Mater. Today: Proceed. 44(3), 3188–3191 (2020). https://doi.org/10.1016/j.matpr.2020.11.434

    Article  CAS  Google Scholar 

  22. Huang, G., Fan, S., Ba, Z., Cai, M., Qiao, D.: Insight into the lubricating mechanism for alkylimidazolium phosphate ionic liquids with different alkyl chain length. Tribol. Int. 140, 105886 (2019). https://doi.org/10.1016/j.triboint.2019.105886

    Article  CAS  Google Scholar 

  23. Huang, G., Yu, Q., Ma, Z., Cai, M., Zhou, F., Liu, W.: Oil-soluble ionic liquids as antiwear and extreme pressure additives in poly-α-olefin for steel/steel contacts. Friction 7, 18–31 (2019). https://doi.org/10.1007/s40544-017-0180-8

    Article  CAS  Google Scholar 

  24. Arellanes-Lozada, P., Díaz-Jiménez, V., Hernández-Cocoletzi, H., Nava, N., Olivares-Xometl, O., Likhanova, N.V.: Corrosion inhibition properties of iodide ionic liquids for API 5L X52 steel in acid medium. Corros. Sci. 175, 108888 (2020). https://doi.org/10.1016/j.corsci.2020.108888

    Article  CAS  Google Scholar 

  25. Murmu, M., Saha, S.K., Murmu, N.C., Banerjee, P.: Effect of stereochemical conformation into the corrosion inhibitive behaviour of double azomethine based Schiff bases on mild steel surface in 1 mol.L−1 HCl medium: an experimental, density functional theory and molecular dynamics simulation study. Corros. Sci. 146, 134–151 (2019). https://doi.org/10.1016/j.corsci.2018.10.002

    Article  CAS  Google Scholar 

  26. Huang, G., Yu, Q., Ma, Z., Cai, M.: Probing the lubricating mechanism of oil-soluble ionic liquids additives. Tribol. Int. 107, 152–162 (2017). https://doi.org/10.1016/j.triboint.2016.08.027

    Article  CAS  Google Scholar 

  27. Huang, G., Yu, Q., Cai, M., Zhou, F., Liu, W.: Investigation of the lubricity and antiwear behavior of guanidinium ionic liquids at high temperature. Tribol. Int. 114, 65–76 (2017). https://doi.org/10.1016/j.triboint.2017.04.010

    Article  CAS  Google Scholar 

  28. Yu, Q., Zhang, C., Dong, R., Shi, Y., Wang, Y., Bai, Y., et al.: Physicochemical and tribological properties of gemini-type halogen-free dicationic ionic liquids. Friction 9, 344–355 (2021). https://doi.org/10.1007/s40544-019-0348-5

    Article  CAS  Google Scholar 

  29. Yu, Q., Zhang, C., Dong, R., Shi, Y., Wang, Y., Bai, Y., et al.: Novel N, P-containing oil-soluble ionic liquids with excellent tribological and anti-corrosion performance. Tribol. Int. 132, 118–129 (2019). https://doi.org/10.1016/j.triboint.2018.12.002

    Article  CAS  Google Scholar 

  30. Yu, Q., Wang, Y., Huang, G., Ma, Z., Shi, Y., Cai, M., et al.: Task-specific oil-miscible ionic liquids lubricate steel/light metal alloy: a tribochemistry study. Adv. Mater. Interfaces 5, 1800791 (2018). https://doi.org/10.1002/admi.201800791

    Article  CAS  Google Scholar 

  31. Yu, Q., Zhang, C., Wang, J., Fan, F., Yang, Z., Zhou, X., et al.: Tribological performance and lubrication mechanism of new gemini quaternary phosphonium ionic liquid lubricants. J. Mol. Liq. 322, 114522 (2021). https://doi.org/10.1016/j.molliq.2020.114522

    Article  CAS  Google Scholar 

  32. Dong, R., Yu, Q., Bai, Y., Wu, Y., Ma, Z., Zhang, J., et al.: Towards superior lubricity and anticorrosion performances of proton-type ionic liquids additives for water-based lubricating fluids. Chem. Eng. J. 383, 123201 (2020). https://doi.org/10.1016/j.cej.2019.123201

    Article  CAS  Google Scholar 

  33. Zhou, Y., Weber, J., Viola, M.B., Qu, J.: Is more always better? Tribofilm evolution and tribological behavior impacted by the concentration of ZDDP, ionic liquid, and ZDDP-Ionic liquid combination. Wear 432, 202951 (2019). https://doi.org/10.1016/j.wear.2019.202951

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support from the National Natural Science Foundation of China (52075524, 21972153), the Youth Innovation Promotion Association of CAS (2018454), Advance Research Project of China Manned Space (CMS) (040101), Gansu Province Science and Technology Plan (20JR10RA060 and 20JR10RA048), and LICP Cooperation Foundation for Young Scholars (HZJJ21-06).

Funding

The funded was provided by National Natural Science Foundation of China, Grant Nos. (52075524, 21972153, Youth Innovation Promotion Association of the Chinese Academy of Sciences, Grant No (2018454), Advance Research Project of China Manned Space, Grant No (040101), Gansu Province Science and Technology Plan, Grant Nos (20JR10RA060, 20JR10RA048), LICP Cooperation Foundation for Young Scholars, Grant No (HZJJ21-06)

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qiangliang Yu or Meirong Cai.

Ethics declarations

Conflict of interest

There are no conflict to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, G., Zhang, C., Huang, Q. et al. Novel Phosphate Organic Guanidine Salt Water-Based Additive with Integrated Anti-Friction, Anti-Wear and Anti-Corrosion Properties. Tribol Lett 70, 33 (2022). https://doi.org/10.1007/s11249-022-01577-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11249-022-01577-4

Keywords

Navigation