Skip to main content
Log in

Electric-Carrying Nanofriction Properties of Atomic-Scale Steps on Graphene

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

The electric-carrying nanofriction properties of graphene are vitally important in the reliability and lifetime of graphene-based micro-/nanoelectromechanical systems. However, ubiquitous atomic-scale steps on graphene have an impact on their friction properties. In this work, electric-carrying nanofriction properties of atomic-scale steps on graphene were studied using the conductive atomic force microscope. Lateral force at uncovered step increased noticeably with the increasing voltages. Electrostatic interaction between the tip and dangling bonds along the step edges significantly increases the lateral force. In contrast, the lateral force of covered steps has only a slight increase as the voltage increases. In addition, oxidation of graphene is more likely to occur at uncovered step due to water molecules adsorbed by dangling bonds. The observations provide a deeper insight into the frictional behavior of atomic-scale steps on graphene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Hainsworth, S.: Tribology on the Small Scale: A Bottom up Approach to Friction, Lubrication, and Wear. IOP Publishing, Bristol (2008)

    Google Scholar 

  2. Lee, C., Li, Q., Kalb, W., Liu, X.Z., Berger, H., Carpick, R.W., Hone, J.: Frictional characteristics of atomically thin sheets. Science 328(5974), 76–80 (2010)

    CAS  Google Scholar 

  3. Egberts, P., Han, G.H., Liu, X.Z., Johnson, A.C., Carpick, R.W.: Frictional behavior of atomically thin sheets: hexagonal-shaped graphene islands grown on copper by chemical vapor deposition. ACS Nano 8(5), 5010–5021 (2014)

    CAS  Google Scholar 

  4. Ye, Z., Otero-de-la-Roza, A., Johnson, E.R., Martini, A.: Effect of tip shape on atomic-friction at graphite step edges. Appl. Phys. Lett. 103(8), 081601 (2013)

    Google Scholar 

  5. Qi, Y.Z., Liu, J., Zhang, J., Dong, Y.L., Li, Q.Y.: Wear resistance limited by step edge failure: the rise and fall of graphene as an atomically thin lubricating material. Acs Appl. Mater. Interfaces 9(1), 1099–1106 (2017)

    CAS  Google Scholar 

  6. Park, J.Y., Qi, Y.B., Ogletree, D.F., Thiel, P.A., Salmeron, M.: Influence of carrier density on the friction properties of silicon pn junctions. Phys. Rev. B 76(6), 064108 (2007)

    Google Scholar 

  7. Qi, Y.B., Park, J.Y., Hendriksen, B.L.M., Ogletree, D.F., Salmeron, M.: Electronic contribution to friction on GaAs: an atomic force microscope study. Phys. Rev. B 77(18), 184105 (2008)

    Google Scholar 

  8. Kim, K.S., Lee, H.J., Lee, C., Lee, S.K., Jang, H., Ahn, J.H., Kim, J.H., Lee, H.J.: Chemical vapor deposition-grown graphene: the thinnest solid lubricant. ACS Nano 5(6), 5107–5114 (2011)

    CAS  Google Scholar 

  9. Won, M.S., Penkov, O.V., Kim, D.E.: Durability and degradation mechanism of graphene coatings deposited on Cu substrates under dry contact sliding. Carbon 54(2), 472–481 (2013)

    CAS  Google Scholar 

  10. Vasić, B., Matković, A., Gajić, R., Stanković, I.: Wear properties of graphene edges probed by atomic force microscopy based lateral manipulation. Carbon 107, 723–732 (2016)

    Google Scholar 

  11. Ye, Z., Martini, A.: Atomic friction at exposed and buried graphite step edges: experiments and simulations. Appl. Phys. Lett. 106(23), 231603 (2015)

    Google Scholar 

  12. Lee, H., Lee, H.B.R., Kwon, S., Salmeron, M., Park, J.Y.: Internal and external atomic steps in graphite exhibit dramatically different physical and chemical properties. ACS Nano 9(4), 3814–3819 (2015)

    CAS  Google Scholar 

  13. Dong, Y., Liu, X.Z., Egberts, P., Ye, Z., Carpick, R.W., Martini, A.: Correlation between probe shape and atomic friction peaks at graphite step edges. Tribol Lett. 50(1), 49–57 (2012)

    Google Scholar 

  14. Egberts, P., Ye, Z., Liu, X.Z., Dong, Y., Martini, A., Carpick, R.W.: Environmental dependence of atomic-scale friction at graphite surface steps. Phys. Rev. B 88(3), 035409 (2013)

    Google Scholar 

  15. Qi, Y., Liu, J., Dong, Y., Feng, X.Q., Li, Q.: Impacts of environments on nanoscale wear behavior of graphene: edge passivation vs. substrate pinning. Carbon 139, 59–66 (2018)

    CAS  Google Scholar 

  16. Lang, H., Peng, Y., Zeng, X., Cao, X.A., Liu, L., Zou, K.: Effect of relative humidity on the frictional properties of graphene at atomic-scale steps. Carbon 137, 519–526 (2018)

    CAS  Google Scholar 

  17. Schwoebel, R.L., Shipsey, E.J.: Step motion on crystal surfaces. JAP 37(10), 3682–3686 (1966)

    CAS  Google Scholar 

  18. Ehrlich, G., Hudda, F.G.: Atomic view of surface self-diffusion: tungsten on tungsten. J. Chem. Phys. 44(3), 1039–1049 (1966)

    CAS  Google Scholar 

  19. Steiner, P., Gnecco, E., Krok, F., Budzioch, J., Walczak, L., Konior, J., Szymonski, M., Meyer, E.: Atomic-scale friction on stepped surfaces of ionic crystals. Phys. Rev. Lett. 106(18), 186104 (2011)

    Google Scholar 

  20. Hunley, D.P., Flynn, T.J., Dodson, T., Sundararajan, A., Boland, M.J., Strachan, D.R.: Friction, adhesion, and elasticity of graphene edges. Phys. Rev. B 87(3), 035417 (2013)

    Google Scholar 

  21. Chen, L., Chen, Z., Tang, X.Y., Yan, W.M., Zhou, Z.R., Qian, L.M., Kim, S.H.: Friction at single-layer graphene step edges due to chemical and topographic interactions. Carbon 154, 67–73 (2019)

    CAS  Google Scholar 

  22. Chen, Z., Khajeh, A., Martini, A., Kim, S.H.: Chemical and physical origins of friction on surfaces with atomic steps. Sci. Adv. 5(8), 0513 (2019)

    Google Scholar 

  23. Acik, M., Chabal, Y.J.: Nature of graphene edges: a review. Jpn. J. Appl. Phys. 50(7R), 070101 (2011)

    Google Scholar 

  24. Ji, S.H., Hannon, J., Tromp, R., Perebeinos, V., Tersoff, J., Ross, F.: Atomic-scale transport in epitaxial graphene. Nat. Mater. 11(2), 114–119 (2012)

    CAS  Google Scholar 

  25. Kuramochi, H., Odaka, S., Morita, K., Tanaka, S., Miyazaki, H., Lee, M., Li, S.L., Hiura, H., Tsukagoshi, K.: Role of atomic terraces and steps in the electron transport properties of epitaxial graphene grown on SiC. AIP Adv. 2(1), 012115 (2012)

    Google Scholar 

  26. Gorjizadeh, N., Kawazoe, Y.: Chemical functionalization of graphene nanoribbons. J. Nanomater. 7, 1–7 (2010)

    Google Scholar 

  27. Wagner, K., Cheng, P., Vezenov, D.: Noncontact method for calibration of lateral forces in scanning force microscopy. Langmuir 27(8), 4635–4644 (2011)

    CAS  Google Scholar 

  28. Chung, D.D.L.: Review graphite. J Mater Sci. 37(8), 1475–1489 (2002)

    CAS  Google Scholar 

  29. Lang, H., Peng, Y., Zeng, X.: Effect of interlayer bonding strength and bending stiffness on 2-dimensional materials’ frictional properties at atomic-scale steps. Appl. Surf. Sci. 411, 261–270 (2017)

    CAS  Google Scholar 

  30. Wang, Z.: Lubricity of graphene on rough Au surfaces. J. Phys. D: Appl. Phys. 51(43), 435301 (2018)

    Google Scholar 

  31. Cao, C., Sun, Y., Filleter, T.: Characterizing mechanical behavior of atomically thin films: a review. J. Mater. Res. 29(3), 338–347 (2014)

    CAS  Google Scholar 

  32. Sherpa, S.D., Levitin, G., Hess, D.W.: Effect of the polarity of carbon-fluorine bonds on the work function of plasma-fluorinated epitaxial graphene. Appl. Phys. Lett. 101(11), 111602 (2012)

    Google Scholar 

  33. Sherpa, S.D., Paniagua, S.A., Levitin, G., Marder, S.R., Williams, M., Hess, D.W.: Photoelectron spectroscopy studies of plasma-fluorinated epitaxial graphene. J. Vac. Sci. Technol. B 30(3), 03D102 (2012)

    Google Scholar 

  34. Sommerhalter, C., Matthes, T.W., Glatzel, T., Jäger-Waldau, A., Lux-Steiner, M.C.: High-sensitivity quantitative Kelvin probe microscopy by noncontact ultra-high-vacuum atomic force microscopy. Appl. Phys. Lett. 75(2), 286–288 (1999)

    CAS  Google Scholar 

  35. Kumar, P.V., Bernardi, M., Grossman, J.C.: The impact of functionalization on the stability, work function, and photoluminescence of reduced graphene oxide. ACS Nano 7(2), 1638–1645 (2013)

    CAS  Google Scholar 

  36. Ramprasad, R., Allmen, P.V., Fonseca, L.R.C.: Contributions to the work function: A density-functional study of adsorbates at graphene ribbon edges. Phys. Rev. B 60(8), 6023–6027 (1999)

    CAS  Google Scholar 

  37. Park, J.Y., Ogletree, D., Thiel, P., Salmeron, M.: Electronic control of friction in silicon pn junctions. Sci 313(5784), 186–186 (2006)

    CAS  Google Scholar 

  38. Peng, Y.T., Wang, Z.Q., Zou, K.: Friction and wear properties of different types of graphene nanosheets as effective solid lubricants. Langmuir 31(28), 7782–7791 (2015)

    CAS  Google Scholar 

  39. Wang, M.X., Huang, Z.H., Lv, W., Yang, Q.H., Kang, F., Liang, K.: Water vapor adsorption on low-temperature exfoliated graphene nanosheets. J. Phys. Chem. Solids 73(12), 1440–1443 (2012)

    CAS  Google Scholar 

  40. Červenka, J., Kalousek, R., Bartošík, M., Škoda, D., Tomanec, O., Šikola, T.: Fabrication of nanostructures on Si (100) and GaAs (100) by local anodic oxidation. Appl. Surf. Sci. 253(5), 2373–2378 (2006)

    Google Scholar 

  41. Kudin, K.N., Ozbas, B., Schniepp, H.C., Prud’homme, R.K., Aksay, I.A., Car, R.: Raman spectra of graphite oxide and functionalized graphene sheets. Nano Lett. 8(1), 36–41 (2008)

    CAS  Google Scholar 

  42. Ferrari, A.C., Robertson, J.: Interpretation of Raman spectra of disordered and amorphous carbon. Phys. Rev. B 61(20), 14095–14107 (2000)

    CAS  Google Scholar 

  43. Ik-Su, B., Duhee, Y., Sik, C.J., Inrok, H., Duk Hyun, L., Jung, L.M., Tomoji, K., Young-Woo, S., Quanxi, J., Hyeonsik, C.: Nanoscale lithography on monolayer graphene using hydrogenation and oxidation. ACS Nano 5(8), 6417 (2011)

    Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant Nos. 51775105, 51905089, 51675097), the Natural Science Foundation of Shanghai (Grant No. 17ZR1400700), and the Fundamental Research Funds for the Central Universities and DHU Distinguished Young Professor Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yitian Peng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3409 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Peng, Y., Lang, H. et al. Electric-Carrying Nanofriction Properties of Atomic-Scale Steps on Graphene. Tribol Lett 68, 121 (2020). https://doi.org/10.1007/s11249-020-01365-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11249-020-01365-y

Keywords

Navigation