Skip to main content
Log in

Dislocation Structure and Stick–Slip Phenomenon

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

Friction is a complex process involving multi-scale asperity contact and large plastic deformation associated with the development of a dislocation structure. Friction is closely associated with the stick–slip phenomenon. In spite of the large number of papers, dedicated to stick–slip effects, little effort has been directed toward elucidating the development of the dislocation structure during stick–slip phenomena. Here, we report some new systematic investigations into the dislocation nature of stick–slips during low-velocity friction of a lithium fluoride single crystal rubbed against a spherical diamond indenter. It is shown that the average velocity of the indenter in the stick phase is about 300 times lower than the maximal velocity in the slip. This difference in velocities leads to entirely different dislocation behavior and damage development in the stick and slips phases. The stick phase is mainly determined by time-dependent strain (creep) wherein, as in metals and alloys, three stages of creep are observed. Based on the analysis of the dislocation structure, a model of the dislocation distribution in the regions of stick (creep) and slip is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Bowden, F., Tabor, D.: The Friction and Lubrication of Solids. Clarendon, Oxford (1950)

    Google Scholar 

  2. Rabinowicz, E.: The nature of the static and kinetic coefficients of friction. J. Appl. Phys. 22, 1373–1379 (1958)

    Article  Google Scholar 

  3. Persson, B.: Sliding Friction: Physical Principles and Applications. Springer, Heidelberg (1998)

    Book  Google Scholar 

  4. Rapoport, L., Bilik, Y., Feldman, Y., et al.: Hollow nanoparticles of WS2 as potential solid-state lubricants. Nature 387, 791–793 (1997)

    Article  Google Scholar 

  5. Scholz, C.: The Mechanics of Earthquakes and Faulting. Cambridge University Press, Cambridge (1990)

    Google Scholar 

  6. Lee, D., Banquy, X., Israelachvili, J.: Stick–slip friction and wear of articular joints. Proc. Natl. Acad. Sci. 28, E567–E574 (2013)

    Article  Google Scholar 

  7. Urbakh, M., Klafter, J., Gourdon, D., Israelachvili, J.: The nonlinear nature of friction. Nature 430, 525–528 (2004)

    Article  Google Scholar 

  8. Rabinovicz, E.: The intrinsic variables affecting the stick–slip process. Proc. Phys. Soc. Lond. 71, 668–675 (1958)

    Article  Google Scholar 

  9. Heslot, F., Baumberger, T., Perrin, B., Caroli, B., Caroli, C.: Creep, stick–slip, and dry friction dynamics: experiments and a heuristic model. Phys. Rev. E 49, 4973–4988 (1994)

    Google Scholar 

  10. Baumberger, T., Heslot, F., Perrin, B.: Crossover from creep to inertial motion in friction dynamics. Nature 367, 544–546 (1994)

    Article  Google Scholar 

  11. Baumberger, T., Gauthier, L.: Creeplike relaxation at the interface between rough solids under shear. J. Phys. 6, 1021–1030 (1996)

    Google Scholar 

  12. Rabinowicz, E.: Friction and Wear of Materials. Wiley, New York (1995)

    Google Scholar 

  13. Cho, M., Kim, S., Lim, D., Jang, H.: Atomic scale stick–slip caused by dislocation nucleation and propagation during scratching of a Cu substrate with a nanoindenter: a molecular dynamics simulation. Wear 259, 1392–1399 (2005)

    Article  Google Scholar 

  14. Smith, R., Mulliah, D., Kenny, S., et al.: Stick slip and wear on metal surfaces. Wear 259, 459–466 (2005)

    Article  Google Scholar 

  15. Filippov, A., Klafter, J., Urbakh, M.: Friction through dynamical formation and rupture of molecular bonds. Phys. Rev. Lett. 92, 135503-1–135503-4 (2004)

    Article  Google Scholar 

  16. Müser, M.: How static is static friction? Proc. Natl. Acad. Sci. 105, 13187–13188 (2008)

    Article  Google Scholar 

  17. Yang, Z., Zhang, H., Marder, M.: Dynamics of static friction. Proc. Natl. Acad. Sci. 105, 13264–13268 (2008)

    Article  Google Scholar 

  18. Hurtado, J., Kim, K.: Scale effects in friction of single-asperity contacts. I. From concurrent slip to single-dislocation-assisted slip. Proc. R. Soc. Lond. A 455, 3363–3384 (1999)

    Article  Google Scholar 

  19. Hurtado, J., Kim, K.: Scale effects in friction of single-asperity contacts. II. Multiple-dislocation-cooperated slip. Proc. R. Soc. Lond. A 455, 3385–3400 (1999)

    Article  Google Scholar 

  20. Deshpande, V., Needleman, A., Van der Giessen, E.: Discrete dislocation plasticity analysis of static friction. Acta Mater. 52, 3135–3149 (2004)

    Article  Google Scholar 

  21. Merkle, A., Marks, L.: A predictive analytical friction model from basic theories of interfaces, contacts and dislocations. Tribol. Lett. 26, 73–84 (2007)

    Article  Google Scholar 

  22. M’ndange-Pfupfu, A., Marks, L.: A dislocation-based analytical model for the nanoscale processes of shear and plowing friction. Tribol. Lett. 39, 163–167 (2010)

    Article  Google Scholar 

  23. Rapoport, L.: Peculiarities of LiF single-crystal deformation in vaseline oil at elevated temperatures. Wear 161, 23–28 (1993)

    Article  Google Scholar 

  24. Harea, E., Lapsker, I., Laikhtman, A., Rapoport, L.: Bauschinger’s effect and dislocation structure under friction of LiF single crystals. Tribol. Lett. 52, 205–212 (2013)

    Article  Google Scholar 

  25. Gilman, J., Johnston W.: Dislocations and mechanical properties of crystals. In: Fisher, J., Johnston, W., Thomson, R., Vreeland, T. (eds.), p. 116. Willey, New York (1957)

  26. Kassner, M., Perez-Prado, M.: Fundamentals of Creep in Metals and Alloys. Elsevier, Oxford (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Rapoport.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Perfilyev, V., Moshkovich, A., Lapsker, I. et al. Dislocation Structure and Stick–Slip Phenomenon. Tribol Lett 55, 295–301 (2014). https://doi.org/10.1007/s11249-014-0358-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11249-014-0358-4

Keywords

Navigation