Skip to main content
Log in

Micro–Macro-Shear-Displacement Behavior of Contacting Rough Solids

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

Interlocking asperities are shown to have a fundamental effect on the friction behavior of contacting solids through theoretically derived shear force–displacement relationship. The key aspect of this relationship is the asperity contact orientation probability distribution obtained using the random process theory in terms of measurable surface roughness parameters. Thus, the obliquity of surface asperity contact is included in the contact shear analysis in a fundamental manner. The interlocking asperities are found to result in a normal load-dependent friction coefficient for a contact. The interlocking also affects contact partial slip and the shear displacements that precede sliding. The derived relationship can be used to evaluate factors, such as asperity adhesion, plasticity, damage, normal-shear coupling and scale dependency, which are difficult to separate in experiments and atomistic simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Yaqoob, M.A., Winogrodzka, A., Fischer, H.R., Gelinck, E.R.M., de Rooij, M.B., Schipper, D.J.: Pre-sliding behaviour of single asperity contact. Tribol. Lett. 49(3), 553–562 (2013)

    Article  Google Scholar 

  2. Gao, J.P., Luedtke, W.D., Gourdon, D., Ruths, M., Israelachvili, J.N., Landman, U.: Frictional forces and Amontons’ law: from the molecular to the macroscopic scale. J. Phys. Chem. B 108(11), 3410–3425 (2004). doi:10.1021/Jp036362l

    Article  CAS  Google Scholar 

  3. Luan, B.Q., Robbins, M.O.: The breakdown of continuum models for mechanical contacts. Nature 435(7044), 929–932 (2005). doi:10.1038/Nature03700

    Article  CAS  Google Scholar 

  4. Mo, Y.F., Turner, K.T., Szlufarska, I.: Friction laws at the nanoscale. Nature 457(7233), 1116–1119 (2009). doi:10.1038/Nature07748

    Article  CAS  Google Scholar 

  5. Urbakh, M., Klafter, J., Gourdon, D., Israelachvili, J.: The nonlinear nature of friction. Nature 430(6999), 525–528 (2004). doi:10.1038/Nature02750

    Article  CAS  Google Scholar 

  6. Bowden, F.P., Tabor, D.: The Friction and Lubrication of Solids. Clarendon, Oxford (1950)

    Google Scholar 

  7. Jones, R.E.: A Greenwood-Williamson model of small-scale friction. J. Appl. Mech-t Asme. 74(1), 31–40 (2007). doi:10.1115/1.2172269

    Article  Google Scholar 

  8. De Moerlooze, K., Al-Bender, F.: On the relationship between normal load and friction force in pre-sliding frictional contacts. Part 2: experimental investigation. Wear 269(3–4), 183–189 (2010). doi:10.1016/j.wear.2010.02.008

    Google Scholar 

  9. Tworzydlo, W., Cecot, W., Oden, J., Yew, C.: Computational micro-and macroscopic models of contact and friction: formulation, approach and applications. Wear 220(2), 113–140 (1998)

    Article  CAS  Google Scholar 

  10. Biegel, R.L., Wang, W., Scholz, C.H., Boitnott, G.N., Yoshioka, N.: Micromechanics of rock friction, 1. Effects of surface roughness of initial friction and slip hardening in Westerly Granite. J. Geophys. Res. Solid Earth 97, 8951–8964 (1992)

    Article  Google Scholar 

  11. Longuet-Higgins, M.S.: The statistical analysis of a random, moving surface. Philos. Trans. R Soc. Lond. Ser. A Math. Phys. Sci. 249(966), 321–387 (1957)

    Google Scholar 

  12. Longuet-Higgins, M.S.: Statistical properties of an isotropic random surface. Philos. Trans. R Soc. Lond. Ser. a-Math. Phys. Sci. 250(975), 157–174 (1957)

    Article  Google Scholar 

  13. Nayak, P.R.: Random process model of rough surfaces in plastic contact. Wear 26(3), 305–333 (1973)

    Article  Google Scholar 

  14. Hertz, H.: On the contact of elastic solids. Journal fur de reine und angewandte Mathematik 92, 156–171 (1881)

    Google Scholar 

  15. Johnson, K.L.: Contact mechanics. Cambridge University Press, Cambridge (1985)

    Book  Google Scholar 

  16. Cattaneo, C.: Sul contatto di due corpi elasti:distribuzione locale degli sforzi. Rendicotti dell’ Accademia dei lincei 27(6), 342–348 (1938)

    Google Scholar 

  17. Mindlin, R.D.: Compliance of elastic bodies in contact. J Appl Mech-t Asme 16(3), 259–268 (1949)

    Google Scholar 

  18. Savkoor, A.R., Briggs, G.A.D.: Effect of tangential force on contact of elastic solids in adhesion. Proc. R Soc. Lond. Ser. a-Math. Phys. Eng. Sci. 356(1684), 103–114 (1977). doi:10.1098/rspa.1977.0123

    Article  Google Scholar 

  19. Thornton, C.: Interparticle sliding in the presence of adhesion. J. Phys. D Appl. Phys. 24(11), 1942–1946 (1991). doi:10.1088/0022-3727/24/11/007

    Article  Google Scholar 

  20. Barthel, E., Haiat, G.: Approximate model for the adhesive contact of viscoelastic spheres. Langmuir 18(24), 9362–9370 (2002). doi:10.1021/La025959

    Article  CAS  Google Scholar 

  21. Boucly, V., Nelias, D., Green, I.: Modeling of the rolling and sliding contact between two asperities. J. Tribol-t Asme 129(2), 235–245 (2007). doi:10.1115/1.2464137

    Article  Google Scholar 

  22. Haiat, G., Barthel, E.: An approximate model for the adhesive contact of rough viscoelastic surfaces. Langmuir 23(23), 11643–11650 (2007). doi:10.1021/La701560n

    Article  CAS  Google Scholar 

  23. Jackson, R.L., Green, I.: A statistical model of elasto-plastic asperity contact between rough surfaces. Tribol. Int. 39(9), 906–914 (2006). doi:10.1016/j.triboint.2005.09.001

    Article  CAS  Google Scholar 

  24. Misra, A., Huang, S.: Micromechanical stress-displacement model for rough interfaces: effect of asperity contact orientation on closure and shear behavior. Int. J. Solids Struct. 49(1), 111–120 (2012). doi:10.1016/j.ijsolstr.2011.09.013

    Article  Google Scholar 

  25. Amontons, G.: On the resistance originating in machines. In: Proceedings of the French Royal Academy of Sciences, pp. 206–222 (1699)

  26. Coulomb, C.A.: Theorie des machines simples, en ayant egard au frottement de leurs parties, et a la roideur des cordages. Memoire de Mathematique et de Physics de l’Academie Royale des Sciences X, 161–342 (1785)

  27. da Vinci, L.: Codex Atlanticus

  28. Euler, L.: Sur le frottement des corps solides Memoires de l’academie des sciences de Berlin 4, 122–132 (1748)

  29. Boitnott, G.N., Biegel, R.L., Scholz, C.H., Yoshioka, N., Wang, W.: Micromechanics of Rock Friction. 2. Quantitative modeling of initial friction with contact theory. J. Geophys. Res. Solid Earth 97(B6), 8965–8978 (1992)

    Google Scholar 

  30. Ford, I.J.: Roughness effect on friction for multi-asperity contact between surfaces. J. Phys. D Appl. Phys. 26(12), 2219–2225 (1993)

    Article  Google Scholar 

  31. Misra, A.: Mechanistic model for contact between rough surfaces. J. Eng. Mech-asce 123(5), 475–484 (1997)

    Article  Google Scholar 

  32. Yoshioka, N., Scholz, C.H.: Elastic properties of contacting surfaces under normal and shear loads. 1. Theory. J. Geophys. Res. Solid Earth Planets 94(B12), 17681–17690 (1989)

    Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the support from National Natural Science Foundation of China, Grant No. 11202080 and the Fundamental Research Funds for the Central Universities, Grant No. 2012ZB0024. A.M. is also supported in part by the United States National Science Foundation grant CMMI-1068528.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anil Misra.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, S., Misra, A. Micro–Macro-Shear-Displacement Behavior of Contacting Rough Solids. Tribol Lett 51, 431–436 (2013). https://doi.org/10.1007/s11249-013-0178-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11249-013-0178-y

Keywords

Navigation