Skip to main content
Log in

Triggering Frictional Slip by Mechanical Vibrations

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

We study the slippage of a tribological system of particles confined between a horizontally driven top plate and a vertically oscillating bottom plate. As shown in a recent article (Capozza et al., Phys Rev Lett 103:085502, 2009), tiny vibrations, when applied in a suitable range of frequencies, may suppress the high dissipative stick–slip dynamics reducing drastically the lateral friction force. Here, we generalize and prove the robustness of the results against the effect of quenched disorder in the confining substrates and the presence of adhesive and cohesive forces at the interface. The observed phenomenology is shown to hold true by moving from the previously considered two dimensional modeling to a more realistic three dimensional geometry. A detailed analysis is devoted to the case of short vibration pulses. These findings are relevant for nanoscale mechanics and in the context of earthquake or avalanches triggering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Persson, B.N.J.: Sliding Friction: Physical Principles and Applications. Springer, Berlin (1998)

    Google Scholar 

  2. Persson, B.N.J.: Sliding friction. Surf. Sci. Rep. 33, 83 (1999)

    Article  CAS  Google Scholar 

  3. Barel, I., Urbakh, M., Jansen, L., Schirmeisen, A.: Multibond dynamics of nanoscale friction: the role of temperature. Phys. Rev. Lett. 104, 066104 (2010)

    Article  Google Scholar 

  4. Tshiprut, Z., Zelner, S., Urbakh, M.: Temperature-induced enhancement of nanoscale friction. Phys. Rev. Lett. 102, 136102 (2009)

    Article  CAS  Google Scholar 

  5. Filippov, A.E., Vanossi, A., Urbakh, M.: Origin of friction anisotropy on a quasicrystal surface. Phys. Rev. Lett. 104, 074302 (2010)

    Article  Google Scholar 

  6. Gao, J., Luedtke, W., Landman, U.: Friction control in thin-film lubrication. J. Phys. Chem. B 102, 5033 (1998)

    Article  CAS  Google Scholar 

  7. Rozman, M.G., Urbakh, M., Klafter, J.: Controlling chaotic frictional forces. Phys. Rev. E 57, 7340 (1998)

    Article  CAS  Google Scholar 

  8. Zaloj, V., Urbakh, M., Klafter, J.: Modifying friction by manipulating normal response to lateral motion. Phys. Rev. Lett. 82, 4823 (1999)

    Article  CAS  Google Scholar 

  9. Tshiprut, Z., Filippov, A.E., Urbakh, M.: Tuning diffusion and friction in microscopic contacts by mechanical excitations. Phys. Rev. Lett. 95, 016101 (2005)

    Article  CAS  Google Scholar 

  10. Guerra, R., Vanossi, A., Urbakh, M.: Controlling microscopic friction through mechanical oscillations. Phys. Rev. E 78, 036110 (2008)

    Article  CAS  Google Scholar 

  11. Heuberger, M., Drummond, C., Israelachvili, J.N.: Coupling of normal and transverse motions during frictional sliding. J. Phys. Chem. B 102, 5038 (1998)

    Article  CAS  Google Scholar 

  12. Socoliuc, A., Gnecco, E., Maier, S., Pfeiffer, O., Baratoff, A., Bennewitz, R., Meyer, E.: Atomic-scale control of friction by actuation of nanometer-sized contacts. Science 313, 207 (2006)

    Article  CAS  Google Scholar 

  13. Jeon, S., Thundat, T., Braiman, Y.: Effect of normal vibration on friction in the atomic force microscopy experiment. Appl. Phys. Lett. 88, 214102 (2006)

    Article  Google Scholar 

  14. Su, L., Xu, J., Kurita, M., Kato, K., Adachi, K.: Tapping effect on friction between slider and disk. Tribol. Lett. 15, 91 (2003)

    Article  Google Scholar 

  15. Johnson, P.A., Savage, H., Knuth, M., Gomberg, J., Marone, C.: Effects of acoustic waves on stick–slip in granular media and implications for earthquakes. Nature 451, 57 (2008)

    Article  CAS  Google Scholar 

  16. Capozza, R., Vanossi, A., Vezzani, A., Zapperi, S.: Suppression of friction by mechanical vibrations. Phys. Rev. Lett. 103, 085502 (2009)

    Article  Google Scholar 

  17. Urbakh, M., Klafter, J., Gourdon, D., Israelachvili, J.: The nonlinear nature of friction. Nature 430, 525 (2004)

    Article  CAS  Google Scholar 

  18. Braun, O.M., Naumovets, A.G.: Nanotribology: microscopic mechanisms of friction. Surf. Sci. Rep. 60, 79 (2006)

    Article  CAS  Google Scholar 

  19. Vanossi, A., Braun, O.M.: Driven dynamics of simplified tribological models. J. Phys. Condens. Matter 19, 305017 (2007)

    Article  Google Scholar 

  20. Benassi, A., Vanossi, A., Santoro, G.E., Tosatti, E.: Parameter-free dissipation in simulated sliding friction. Phys. Rev. B 82, 081401(R) (2010)

    Article  Google Scholar 

  21. Kowalik, Z.J., Franaszek, M., Pierański, P.: Self-reanimating chaos in the bouncing-ball system. Phys. Rev. A 37, 4016 (1988)

    Article  Google Scholar 

  22. Mehta, A., Luck, J.M.: Novel temporal behavior of a nonlinear dynamical system: the completely inelastic bouncing ball. Phys. Rev. Lett. 65, 393 (1990)

    Article  Google Scholar 

  23. Luck, J.M., Mehta, A.: Bouncing ball with a finite restitution: chattering, locking, and chaos. Phys. Rev. E 48, 3988 (1993)

    Article  Google Scholar 

  24. Mátyás, L., Klages, R.: Irregular diffusion in the bouncing ball billiard. Phys. D 187, 165 (2004)

    Article  Google Scholar 

  25. de Wijn, A.S., Kantz, H.: Vertical chaos and horizontal diffusion in the bouncing-ball billiard. Phys. Rev. E 75, 046214 (2007)

    Article  Google Scholar 

  26. Dalton, F., Farrelly, F., Petri, A., Pietronero, L., Pitolli, L., Pontuale, G.: Shear stress fluctuations in the granular liquid and solid phases. Phys. Rev. Lett. 95, 138001 (2005)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was part of Eurocores Projects FANAS/AFRI, sponsored by the Italian Research Council (CNR), and of FANAS/ACOF, sponsored by the Israel Science Foundation (ISF). It is also sponsored by the Italian PRIN Contracts No. 2008Y2P573. A. Vanossi acknowledges the financial support by SINERGIA Project CRSII2_136287\1 sponsored by the Swiss National Science Foundation. R. Capozza acknowledges the support by the German-Israeli Project Cooperation Program (DIP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosario Capozza.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Capozza, R., Vanossi, A., Vezzani, A. et al. Triggering Frictional Slip by Mechanical Vibrations. Tribol Lett 48, 95–102 (2012). https://doi.org/10.1007/s11249-012-0002-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11249-012-0002-0

Keywords

Navigation