Skip to main content
Log in

Friction and Wear of Thermal Oxidation-Treated Ti3SiC2

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

Ti3SiC2 was thermally oxidized (TO) at 1,000 °C for 10 h. An oxide scale of ca. 25 μm was composed of rutile TiO2 and Al2O3 for the outer sub-layer and mixtures of TiO2 and SiO2 for the inner sub-layer. The tribological behavior of Ti3SiC2 and TO–Ti3SiC2 sliding against Si3N4 at 25 and 600 °C was investigated. Results indicated that at both 25 and 600 °C, the oxide scale significantly improved the tribological performance of Ti3SiC2. The wear mechanisms of Ti3SiC2 and TO–Ti3SiC2 sliding against Si3N4 at 25 and 600 °C are briefly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Barsoum, M.W.: The Mn+1AXn phases: a new class of solids; thermodynamically stable nanolaminates. Prog. Solid State Chem. 28, 201–281 (2000)

    Article  CAS  Google Scholar 

  2. Barsoum, M.W., El-Raghy, T.: Synthesis and characterization of a remarkable ceramic: Ti3SiC2. J. Am. Ceram. Soc. 79, 1953–1956 (1996)

    Article  CAS  Google Scholar 

  3. Barsoum, M.W., Brodkin, D., El-Raghy, T.: Layered machinable ceramics for high temperature applications. Scripta Mater. 36, 535–541 (1997)

    Article  CAS  Google Scholar 

  4. Myhra, S., Summers, J.W.B., Kisi, E.H.: Ti3SiC2—a layered ceramic exhibiting ultra-low friction. Mater. Lett. 39, 6–11 (1999)

    Article  CAS  Google Scholar 

  5. El-Raghy, T., Blau, P., Barsoum, M.W.: Effect of grain size on friction and wear behavior of Ti3SiC2. Wear 238, 125–130 (2000)

    Article  CAS  Google Scholar 

  6. Souchet, A., Fontaine, J., Belin, M., Le Mogne, T., Loubet, J.-L., Barsoum, M.W.: Tribological duality of Ti3SiC2. Tribol. Lett. 18(3), 314–352 (2005)

    Article  Google Scholar 

  7. Sun, Z., Zhou, Y.: Tribological behavior of Ti3SiC2-based material. J. Mater. Sci. Technol. 18(2), 142–145 (2002)

    CAS  MathSciNet  Google Scholar 

  8. Zhang, Y., Ding, G., Zhou, Y., Cai, B.: Ti3SiC2—a self-lubricating ceramic. Mater. Lett. 55, 285–289 (2002)

    Article  CAS  Google Scholar 

  9. Hu, C., Zhou, Y., Bao, Y., Wan, D.: Tribological properties of polycrystalline Ti3SiC2 and Al2O3-reinforced Ti3SiC2 composites. J. Am. Ceram. Soc. 89(1), 3456–3461 (2006)

    Article  CAS  Google Scholar 

  10. Sarkar, D., Manoj Kumar, B.V., Basu, B.: Understanding the fretting wear of Ti3SiC2. J. Eur. Ceram. Soc. 26, 2441–2452 (2006)

    Article  CAS  Google Scholar 

  11. Hibi, Y., Miyake, K., Murakami, T., Sasaki, S.: Tribological behavior of SiC-reinforced Ti3SiC2-based composites under dry condition and under lubricated condition with water and ethanol. J. Am. Ceram. Soc. 89(9), 2983–2985 (2006)

    CAS  Google Scholar 

  12. Ren, S., Meng, J., Lu, J., Yang, S.: Tribological behavior of Ti3SiC2 sliding against Ni-based alloys at elevated temperatures. Tribol. Lett. 31, 129–137 (2008)

    Article  CAS  ADS  Google Scholar 

  13. Huang, Z., Zhai, H., Zhou, W., Zhang, Z., Wang, Y., Ai, M., Zhang, Z., Li, S.: High-speed friction and wear behaviors of bulk Ti3SiC2. Trans. Nonferrous Met. Soc. China 15(2), 266–269 (2005)

    CAS  Google Scholar 

  14. Zhai, H., Hang, Z., Zhou, Y., Zhang, Z., Wang, Y., Ai, M.: Oxidation layer in sliding friction surface of high-purity Ti3SiC2. J. Mater. Sci. 39, 6635–6637 (2004)

    Article  CAS  ADS  Google Scholar 

  15. Gupta, S., Filimonov, D., Zaitsev, V., Palanisamy, T., Barsoum, M.W.: Ambient and 550 °C tribological behavior of select MAX phases against Ni-based superalloys. Wear 264, 270–278 (2008)

    Article  CAS  Google Scholar 

  16. El-Raghy, T., Barsoum, M.W.: Diffusion kinetics of the carburization and silicidation of Ti3SiC2. J. Appl. Phys. 83(1), 112–119 (1998)

    Article  CAS  ADS  Google Scholar 

  17. Li, C., Li, M., Zhou, Y.: Improving the surface hardness and wear resistance of Ti3SiC2 by boronizing treatment. Surf. Coat. Technol. 201, 6005–6011 (2007)

    Article  CAS  Google Scholar 

  18. Low, I.M.: Depth profiling of phase composition in a novel Ti3SiC2–TiC system with graded interfaces. Mater. Lett. 58, 927–932 (2004)

    Article  CAS  Google Scholar 

  19. Yang, S., Yang, Q., Sun, Z.: Nucleation and growth of diamond on titanium silicon carbide by microwave plasma-enhanced chemical vapor deposition. J. Cryst. Growth 294, 452–458 (2006)

    Article  CAS  ADS  Google Scholar 

  20. Guo, H., Zhang, J., Li, F., Liu, Y., Yin, J., Zhou, Y.: Surface strengthening of Ti3SiC2 through magnetron sputtering Cu and subsequent annealing. J. Eur. Ceram. Soc. 28, 2099–2107 (2008)

    Article  CAS  Google Scholar 

  21. Gardos, M.N.: Magnéli phases of anion-deficient rutile as lubricious oxides. Part I. Tribological behavior of single-crystal and polycrystalline rutile (Ti n O2n−1). Tribol. Lett. 8, 65–78 (2000)

    Article  CAS  Google Scholar 

  22. Gardos, M.N., Hong, H.-S., Winer, W.O.: The effect of anion vacancies on the tribological properties of rutile (TiO2-x), Part II: experimental evidence. Tribol. Trans. 22(2), 209–220 (1990)

    Article  Google Scholar 

  23. Gardos, M.N.: The effect of anion vacancies on the tribological properties of rutile (TiO2−x ). Tribol. Trans. 31(4), 427–436 (1988)

    Article  CAS  Google Scholar 

  24. Gardos, M.N.: The effect of anion vacancies on the tribological properties of rutile (TiO2−x ). Tribol. Trans. 32, 30–31 (1989)

    Article  Google Scholar 

  25. Woydt, M.: Tribological characteristics of polycrystalline Magnéli-type titanium dioxides. Tribol. Lett. 8, 117–130 (2000)

    Article  CAS  Google Scholar 

  26. Król, S., Ptacek, L., Zalisz, Z., Hepner, M.: Friction and wear properties of titanium and oxidised titanium in dry sliding against hardened C45 steel. J. Mater. Process. Technol. 157–158, 364–369 (2004)

    Article  Google Scholar 

  27. Rama Krishna, D.S., Brama, Y.L., Sun, Y.: Thick rutile layer on titanium for tribological applications. Tribol. Int. 40, 329–334 (2007)

    Article  Google Scholar 

  28. Barsoum, M.W., El-Raghy, T., Ogbuji, L.U.J.T.: Oxidation of Ti3SiC2 in Air. J. Electrochem. Soc. 144(7), 2508–2516 (1997)

    Article  CAS  Google Scholar 

  29. Sun, Z., Zhou, Y., Li, M.: High temperature oxidation behavior of Ti3SiC2-based material in air. Acta Mater. 49, 4347–4353 (2001)

    Article  CAS  Google Scholar 

  30. Chen, T., Green, P.M., Jordan, J.L., Hampikian, J.M., Thadhani, N.N.: Oxidation of Ti3SiC2 composites in air. Metall. Mater. Trans. A 33, 1737–1742 (2002)

    Article  Google Scholar 

  31. Sun, Z., Zhou, Y., Li, M.: Oxidation behaviour of Ti3SiC2-based ceramic at 900–1300 °C in air. Corros. Sci. 43, 1095–1109 (2001)

    Article  CAS  Google Scholar 

  32. Sun, Z., Zhou, Y., Li, M.: Cyclic-oxidation behavior of Ti3SiC2-base material at 1100 °C. Oxid. Met. 57, 379–394 (2002)

    Article  CAS  Google Scholar 

  33. Lee, D.B., Park, S.W.: Oxidation of Ti3SiC2 between 900 and 1200 °C in air. Oxid. Met. 67, 51–66 (2006)

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support from the National Natural Science Foundation of China (50675216), the West Doctor Program and the Knowledge Innovation Program of the Chinese Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinjun Lu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ren, S., Meng, J., Wang, J. et al. Friction and Wear of Thermal Oxidation-Treated Ti3SiC2 . Tribol Lett 37, 59–67 (2010). https://doi.org/10.1007/s11249-009-9490-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11249-009-9490-y

Keywords

Navigation