Skip to main content
Log in

Effect of Applied Load and Surface Roughness on the Tribological Properties of Ni-Based Superalloys Versus Ta2AlC/Ag or Cr2AlC/Ag Composites

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

The novel Ta2AlC–20 vol.% Ag (TaAg) and Cr2AlC–20 vol.% Ag (CrAg) composites were tribologically tested versus a Ni-based superalloy Inc718 (SA) by dry sliding at a sliding speed of 1 m/s at room temperature in air at loads from 3 N to 18 N. The TaAg composites were also tested at 8 and 18 N at 550 °C, and at a 3 N load against the SA with different surface roughnesses at 26 °C and 550 °C. At room temperatures, the coefficients of friction, μ’s, decreased from ~0.8–0.9 to ~0.3–0.4 for both the TaAg and CrAg composites as the applied normal force increased from 3 N to 8 N. Further increases in load to 18 N did not change the μ’s. The specific wear rates, sWR, increased with increased loads for the TaAg composite; they remained almost unchanged for the CrAg composite. This behavior was attributed to the formation of glaze tribofilms—similar to ones observed previously in these tribocouples at elevated temperatures and 3 N—promoted by the increased loads. Preconditioning of the SA surface by sliding against the TaAg composite at 550 °C and 8 N resulted in μ’s of <0.2 and sWR < 10−6 mm3/N-m in subsequent room temperature sliding at 3 N. Somewhat higher, but stable room temperature μ’s of ~0.3 and sWR of ~3 × 10−5 mm3/N-m were observed when the TaAg composites were slid versus a sandblasted SA surface at 500 °C and 3 N. It follows that in situ preconditioning of the tribo-surfaces is a powerful tool for improving the properties of the MAX/Ag-SA tribocouples. The relationship between sliding conditions, chemistries of tribofilms, and their properties are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Erdemir, A.: Modern Tribology Handbook, Ch. 22. CRC Press LLC, Boca Raton, Florida (2003)

    Google Scholar 

  2. Peterson, M.B., Calabrese, S.J., Li, S., Jiang, X.: Friction of alloys at high temperature. J. Mater. Sci. Technol. 10, 313–320 (1994)

    CAS  Google Scholar 

  3. Dellacorte, C., Sliney, H.E.: Tribological Properties of PM212: A High-Temperature, Self-Lubricating, Powder Metallurgy Composite, p. 102355, NASA TM (1990)

  4. Wang, W.: Application of a high temperature self-lubricating composite coating on steam turbine components. Surf. Coat. Tech. 177, 12–17 (2004). doi:10.1016/j.surfcoat.2003.06.025

    Article  Google Scholar 

  5. Barsoum, M.W.: The Mn+1AXn phases: a new class of solids; thermo-dynamically stable nanolaminates. Prog. Solid State Chem. 28, 201–281 (2000). doi:10.1016/S0079-6786(00)00006-6

    Article  CAS  Google Scholar 

  6. Gupta, S., Filimonov, D., Palanisamy, T., El-Raghy, T., Barsoum, M.W.: Ta2AlC and Cr2AlC Ag-based composites—new solid lubricant materials for use over a wide temperature range against Ni-based superalloys and alumina. Wear 262, 1479–1489 (2007). doi:10.1016/j.wear.2007.01.028

    Article  CAS  Google Scholar 

  7. Gupta, S.: Tribology of MAX Phases and Its Composites, Ph.D. Thesis, Drexel University, Philadelphia (2006)

  8. Inman, I.A., Datta, S., Du, H.L., Burnell-Gray, J.S., Luo, Q.: Microscopy of glazed layers formed during high temperature sliding wear at 750 degrees C. Wear 254, 461–467 (2003)

    CAS  Google Scholar 

  9. Jiang, J.R., Stott, F.H., Stack, M.M.: A generic model for dry sliding wear of metals at elevated temperatures. Wear 256, 973–985 (2004). doi:10.1016/j.wear.2003.09.005

    Article  CAS  Google Scholar 

  10. Stott, F.H.: The role of oxidation in the wear of alloys. Tribol. Int. 31, 61–71 (1998). doi:10.1016/S0301-679X(98)00008-5

    Article  CAS  Google Scholar 

  11. Li, X.Y., Tandon, K.N.: Microstructural characterization of mechanically mixed layer and wear debris in sliding wear of an Al alloy and an Al based composite. Wear 245, 148–161 (2000). doi:10.1016/S0043-1648(00)00475-0

    Article  CAS  Google Scholar 

  12. Gupta, S., Filimonov, D., Zaitsev, V., Palanisamy, T., Barsoum, M.W.: Study of tribofilms formed during dry sliding of Ta2AlC/Ag or Cr2AlC/Ag composites against Ni based superalloys and Al2O3. Wear (submitted)

  13. Archard, J.F., Rowntree, R.A.: The temperature of rubbing bodies; part 2, the distribution of temperatures. Wear 128, 1–17 (1988). doi:10.1016/0043-1648(88)90249-9

    Article  Google Scholar 

  14. Kumar, B.V.M., Basu, B., Kalin, M., Vizintin, J.: Load-dependent transition in sliding wear properties of TiCN-WC-Ni cermets. J. Am. Ceram. Soc. 90, 1534–1540 (2007). doi:10.1111/j.1551-2916.2007.01630.x

    Article  CAS  Google Scholar 

  15. So, H., Yu, D.S., Chuang, C.Y.: Formation and wear mechanism of tribo-oxides and the regime of oxidational wear of steel. Wear 253, 1004–1015 (2002). doi:10.1016/S0043-1648(02)00230-2

    Article  CAS  Google Scholar 

  16. Gonzalez, C., Martin, A., Llorca, J., Garrido, M.A., Gomez, M.T., Rico, A., et al.: Numerical analysis of pin on disc tests on Al-Li/SiC composites. Wear 259, 609–612 (2005). doi:10.1016/j.wear.2005.02.107

    Article  CAS  Google Scholar 

  17. Gao, J.Q., Lee, S.C., Ai, X.L., Nixon, H.: An FFT-based transient flash temperature model for general three-dimensional rough surface contacts. J. Tribol. Trans. Asme 122, 519–523 (2000). doi:10.1115/1.555395

    Article  Google Scholar 

  18. Gong, Z.Q., Komvopoulos, K.: Thermomechanical analysis of semi-infinite solid in sliding contact with a fractal surface. J. Tribol. Trans. Asme 127, 331–342 (2005). doi:10.1115/1.1792691

    Article  Google Scholar 

  19. Guha, D., Chowdhuri, S.K.R.: The effect of surface roughness on the temperature at the contact between sliding bodies. Wear 197, 63–73 (1996). doi:10.1016/0043-1648(95)06833-3

    Article  CAS  Google Scholar 

  20. Kalin, M.: Influence of flash temperatures on the tribological behaviour in low-speed sliding: a review. Mater Sci Eng A 374, 390–397 (2004)

    Article  Google Scholar 

  21. Gupta, S., Filimonov, D., Palanisamy, T., Barsoum, M.W.: Tribological behavior of select MAX phases against Al2O3 at elevated temperatures. Wear 265, 560–565 (2008). doi:10.1016/j.wear.2007.11.018

    Article  CAS  Google Scholar 

  22. Lin, Z.J., Li, M.S., Wang, J.Y., Zhou, Y.C.: High-temperature oxidation and hot corrosion of Cr2AlC. Acta Mater. 55, 6182–6191 (2007). doi:10.1016/j.actamat.2007.07.024

    Article  CAS  Google Scholar 

  23. Gupta, S., Filimonov, D., Zaitsev, V., Palanisamy, T, Barsoum, M.W.: Ambient and 550°C tribological behavior of select MAX phases against Ni-based superalloys. Wear 264, 270–278 (2008). doi:10.1016/j.wear.2007.03.011

  24. Rozman, G., Urbakh, M., Klafter, J.: Stick-slip dynamics of interfacial friction. Physica A 249, 184–189 (1998). doi:10.1016/S0378-4371(97)00462-7

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Office of Naval Research (N00421-03-C-0085).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Filimonov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Filimonov, D., Gupta, S., Palanisamy, T. et al. Effect of Applied Load and Surface Roughness on the Tribological Properties of Ni-Based Superalloys Versus Ta2AlC/Ag or Cr2AlC/Ag Composites. Tribol Lett 33, 9–20 (2009). https://doi.org/10.1007/s11249-008-9384-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11249-008-9384-4

Keywords

Navigation