Skip to main content
Log in

Development of a Lubrication System for Momentum Wheels Used in Spacecrafts

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

The success of any satellite mission largely depends upon the performance of the attitude control systems such as gyroscopes and momentum/reaction wheels. The required life and performance quality of these rotating mechanisms are ensured by the selection of bearings and its lubrication. The design and development of lubrication system to meet the long-term uninterrupted performance is a challenging task before the tribologists. This article describes the developmental study of a lubrication system for long-term requirements of momentum/reaction wheels. The developed system is compact and can be placed inside the bearing unit assembly. It works on centrifugal force and able to supply lubricant continuously at a very low rate of few micrograms per hour for many years. Further, the system can be tuned for any flow rate depending on the requirement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Zaretsky, E.V.: Liquid Lubrication in Space. NASA Reference Publication-1240, July 1990

  2. Fusaro, R.L.: Tribology needs for future space and aeronautical systems. NASA Technical Memorandum 104525, December 1991

  3. Park, Y.: Robust and optimal attitude stabilization of spacecraft with external disturbances. Aerosp. Sci. Technol. 9, 253–259 (2005). doi:10.1016/j.ast.2005.01.002

    Article  Google Scholar 

  4. Narayan, S.S., Nair, P.S., Ghosal, A.: Dynamic interaction of rotating momentum wheels with spacecraft elements. J. Sound. Vib. 315, 970–984 (2008). doi:10.1016/j.jsv.2008.02.020

    Article  Google Scholar 

  5. Zheng, J., Banks, S.P., Alleyne, H.: Optimal attitude control for three-axis stabilized flexible spacecraft. Acta. Astronaut. 56, 519–528 (2005). doi:10.1016/j.actaastro.2004.10.002

    Article  Google Scholar 

  6. Kingsbury, E.P., Hanson, R.A., Jones, W.R., Mohr, T.W.: Cartridge bearing system for space applications. In: Proceedings of the 33rd Aerospace Mechanisms Symposium. NASA Conf. Publ. 209259, pp. 137–143 (1999)

  7. Kingsbury, E.P.: Influences on polymer formation rate in instrument ball bearings. Tribol. Trans. 35, 184–188 (1992). doi:10.1080/10402009208982107

    Article  CAS  Google Scholar 

  8. Fote, A.A., Slade, R.A., Feuerstein, S.: The prevention of lubricant migration in spacecraft. Wear 51, 67–75 (1978). doi:10.1016/0043-1648(78)90055-8

    Article  Google Scholar 

  9. Lowenthal, S., Boesinger, E., Donley, A.: International Rolling Element Symposium 91, Sponsored by C.S. Draper Lab and DOD, Instrument Bearing Working Group, 8–11 April 1991

  10. Boesiger, E.A., Warner, M.H.: Spin bearing retainer design optimization. In: Proceedings of the 25th Aerospace Mechanisms Symposium. NASA Conf. Publ. 3113, pp. 161–178 (1991)

  11. Gupta, P.K.: Cage unbalance and wear in ball bearings. Wear 147, 93–104 (1991). doi:10.1016/0043-1648(91)90121-A

    Article  Google Scholar 

  12. Gupta, P.K.: Frictional instabilities in ball bearings. Tribol. Trans. 31(2), 258–268 (1988)

    Article  Google Scholar 

  13. Space Mechanisms Lessons Learned Study. http://www.grc.nasa.gov/WWW/spacemech/

  14. Kannel, J.W., Bupara, S.S.: A simplified model of cage motion in angular contact ball bearings operating in the EHD region. J. Lubr. Technol. ASME Trans. 100(2), 395–403 (1978)

    Google Scholar 

  15. Kannel, J.W., Snediker, D.: Hidden Cause of Bearing Failure. Machine Design, pp. 78–82, April (1977)

  16. Shogrin, B.A., Jones, W.R. Jr., Kingsbury, E.P., Prahl, J.M.: Experimental Determination of Load Carrying Capacity of Point Contact at Zero Entrainment Velocity. NASA/TM-1999-208848, January 1999

  17. Singer, H.B., Gelotte, E.: Design of a high-speed reliable ball bearing. In: Proceedings of the 28th Aerospace Mechanisms Symposium, NASA Conf. Publ. 3260, pp. 279–283, May 1994

  18. Jones, W.R. Jr., Shogrin, B.A., Kingsbury, E.P.: Long-term performance of a retainerless baring cartridge with an oozing flow lubricator for space application. In: Proceedings of the International Rolling Element Bearing Symposium, April 1997

  19. Kingsbury, E.: Cross flow in a starved EHD contact. ASLE Trans. 16, 276–280 (1973)

    Google Scholar 

  20. Hashimoto, F.: Ooze Flow Bearing. United State Patent, Patent no.: 6290397, 18 September 2001

  21. Kingsbury, E.P., Hanson, R.A., Jones, W.R., Mohr, T.W.: Cartridge bearing system for space applications. In: Proceedings of the 33rd Aerospace Mechanisms Symposium. NASA Conf. Publ. 209259, pp. 137–143 (1999)

  22. Singer, H.B., Gelotte, E.: Design of a high-speed reliable ball bearing. In: Proceedings of the 28th Aerospace Mechanisms Symposium, NASA Conf. Publ, 3260, pp. 279–283 (1994)

  23. Loewenthal, S.H., Scibbe, H.W., Parker, R.J., Zaretsky, E.V.: Operating Characteristics of a 0.87 kW-hr Flywheel Energy Storage Module. NASA Technical Memorandum 87038, August 1985

  24. Marchetti, M., Meurisse, M.H., Vergne, P., Sicreb, J., Durand, M.: Analysis of oil supply phenomena by sintered porous reservoirs. Tribol. Lett. 10(3), (2001). doi:10.1023/A:1009026123907

  25. Sathyan, K.: Long-term lubrication systems for momentum wheels used in spacecrafts. MS Thesis, Indian Institute of Technology Madras, September 2003

  26. Smith, D.W., Hooper, F.L.: Positive lubrication system. In: Proceedings of the 24th Aerospace Mechanisms Symposium. NASA Conf. Publ. 3062, pp. 243–258, (1990)

  27. James, G.E.: Positive commandable oiler for satellite bearing lubrication. In: 11th Aerospace Mechanisms Symposium, NASA CP-2038, pp. 87–95 (1977)

  28. Marchetti, M., Jones, W.R. Jr., Pepper, S.V., Jansen, M.J., Predmore, R.E.: In-Situ, On-Demand Lubrication System for Space Mechanisms. NASA Technical Memorandum 2002-211706, July 2002

  29. Jones, W.R. Jr., Jansen, M.J.: Lubrication for space application. NASA Contractor Report-2005-213424, January 2005

  30. Collins, R.E.: Flow Through Porous Materials. Reinhold Publishing Corporation, New York (1961)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Sathyan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sathyan, K., Gopinath, K., Hsu, H.Y. et al. Development of a Lubrication System for Momentum Wheels Used in Spacecrafts. Tribol Lett 32, 99–107 (2008). https://doi.org/10.1007/s11249-008-9367-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11249-008-9367-5

Keywords

Navigation