Skip to main content
Log in

Ectopic overexpression of porcine DGAT1 increases intramuscular fat content in mouse skeletal muscle

  • Brief Communication
  • Published:
Transgenic Research Aims and scope Submit manuscript

Abstract

The microsomal enzyme 1, 2-acyl CoA: diacylglyceroltransferase-1 (DGAT1) plays an important role in triglyceride storage in adipose tissue and expresses in skeletal muscle as well. The primary goal of the present study was to investigate the effect of porcine DGAT1 on intramuscular fat (IMF) content of transgenic mice produced by pronuclear microinjection with muscle specific promoter of porcine muscle creatine kinase (MCK). In normal chow-fed diet, 4 month-old male transgenic mice expressed more DGAT1, ACC1, UCP1, and FABP4 mRNAs and proteins in skeletal muscle than control mice by real-time PCR and western blot. No significant changes were detected for ACC2, CD36, ADRP, PPAR gamma and LPL. Triacylglycerol assay and soleus muscle sections showed overexpression of porcine DGAT1 in skeletal muscle increased intramyocellular triglyceride and percent of the total cell surface covered by lipid droplets. Thus, upregulation of porcine DGAT1 in skeletal muscle increases IMF content. The present study may further serve to develop transgenic pigs with higher IMF content and improved meat quality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

References

  • Abu-Elheiga L, Matzuk MM, Kordari P, Oh W, Shaikenov T, Gu Z, Wakil SJ (2005) Mutant mice lacking acetyl-CoA carboxylase 1 are embryonically lethal. Proc Natl Acad Sci USA 102:12011–12016

    Article  PubMed  CAS  Google Scholar 

  • Barber MC, Price NT, Travers MT (2005) Structure and regulation of acelyl-CoA carboxylase genes of metazoa. Biochim Biophys Acta 1733:1–28

    Article  PubMed  CAS  Google Scholar 

  • Chen HC, Smith SJ, Ladha Z, Jensen DR, Ferreira LD, Pulawa LK, McGuire JG, Pitas RE, Eckel RH, Farese RV Jr (2002a) Increased insulin and leptin sensitivity in mice lacking acyl CoA:diacylglycerol acyltransferase 1. J Clin Invest 109:1049–1055. doi:10.1172/JCI14672

    PubMed  CAS  Google Scholar 

  • Chen HC, Stone SJ, Buhman KK, Zhou P, Farese RV Jr (2002b) Dissociation of obesity and impaired glucose disposal in mice overexpressing acyl coenzyme A: diacylglycerol acyltransferase 1 in white adipose tissue. Diabetes 51:3189–3195

    Article  PubMed  CAS  Google Scholar 

  • Cho KH, Kim MJ, Jeon GJ, Chung HY (2011) Association of genetic variants for FABP3 gene with back fat thickness and intramuscular fat content in pig. Mol Biol Rep 38:2161–2166

    Article  PubMed  CAS  Google Scholar 

  • Fischer K (2005) Consumer-relevant aspects of pork quality. Anim Sci Pap Rep 23:269–280

    Google Scholar 

  • Gerbens F, Jansen A, van Erp AJ, Harders F, Meuwissen TH, Rettenberger G, Veerkamp JH, te Pas MF (1998) The adipocyte fatty acid-binding protein locus: characterization and association with intramuscular fat content in pigs. Mamm Genome 9:1022–1026

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez MD, Ricquier D, Cassard AM (2000) The human uncoupling protein-1 gene (UCP1): present status and perspectives in obesity research. Obes Rev 1(02):61–72. doi:10.1046/j.1467-789x.2000.00009.x

    Article  Google Scholar 

  • Ishii S, Iizuka K, Miller BC, Uyeda K (2004) Carbohydrate response element binding protein directly promotes lipogenic enzyme gene transcription. Proc Natl Acad Sci USA 101:15597–15602

    Article  PubMed  CAS  Google Scholar 

  • Jia JJ, Tian YB, Cao ZH, Tao LL, Zhang X, Gao SZ, Ge CR, Lin QY, Jois M (2010) The polymorphisms of UCP1 genes associated with fat metabolism, obesity and diabetes. Mol Biol Rep 37:1513–1522

    Article  PubMed  CAS  Google Scholar 

  • Johnson JE, Wold BJ, Hauschka SD (1989) Muscle creatine kinase sequence elements regulating skeletal and cardiac muscle expression in transgenic mice. Mol Cell Biol 9:3393–3399

    PubMed  CAS  Google Scholar 

  • Kelley DE, Goodpaster BH, Storlien L (2002) Muscle triglyceride and insulin resistance. Annu Rev Nutr 22:325–346

    Article  PubMed  CAS  Google Scholar 

  • Kim JK, Gimeno RE, Higashimori T, Kim HJ, Choi H, Punreddy S, Mozell RL, Tan G, Stricker-Krongrad A, Hirsch DJ, Fillmore JJ, Liu ZX, Dong J, Cline G, Stahl A, Lodish HF, Shulman GI (2004) Inactivation of fatty acid transport protein 1 prevents fat-induced insulin resistance in skeletal muscle. J Clin Invest 113:756–763

    PubMed  CAS  Google Scholar 

  • Liu L, Shi XJ, Choi CS, Shulman GI, Klaus K, Nair KS, Schwartz GJ, Zhang YY, Goldberg IJ, Yu YH (2009) Paradoxical coupling of triglyceride synthesis and fatty acid oxidation in skeletal muscle overexpressing DGAT1. Diabetes 58(11):2516–2524. doi:10.2337/db08-1096

    Article  PubMed  CAS  Google Scholar 

  • McFie PJ, Stone SL, Banman SL, Stone SJ (2010) Topological orientation of acyl-CoA:diacylglycerol acyltransferase-1 (DGAT1) and identification of a putative active site histidine and the role of the N terminus in dimer/tetramer formation. J Biol Chem 285:37377–37387. doi:10.1074/jbc.M110.163691

    Article  PubMed  CAS  Google Scholar 

  • Meegalla RL, Billheimer JT, Cheng D (2002) Concerted elevation of acyl-coenzyme A: diacylglycerol acyltransferase (DGAT) activity through independent stimulation of mRNA expression of DGAT1 and DGAT2 by carbohydrate and insulin. Biochem Biophys Res Commun 298:317–323

    Article  PubMed  CAS  Google Scholar 

  • Munday MR, Hemingway CJ (1999) The regulation of acetyl-CoA carboxylase—a potential target for the action of hypolipidemic agents. Adv Enzyme Regul 39:205–234

    Article  PubMed  CAS  Google Scholar 

  • Nguyen QG, Buskin JN, Himeda CL, Fabre-Suver C, Hauschka SD (2003) Transgenic and tissue culture analyses of the muscle creatine kinase enhancer Trex control element in skeletal and cardiac muscle indicate differences in gene expression between muscle types. Transgenic Res 12:337–349

    Article  PubMed  CAS  Google Scholar 

  • Nonneman D, Rohrer GA (2002) Linkage mapping of porcine DGAT1 to a region of chromosome 4 that contains QTL for growth and fatness. Intl Soc Anim Genet 33:472–473

    Article  CAS  Google Scholar 

  • Roorda BD, Hesselink MK, Schaart G, Moonen E, Martinez P, Losen M, Baets MH, Mensink RP, Schrauwen P (2005) DGAT1 overexpression in muscle by in vivo DNA electroporation increases intramyocellular lipid content. J Lipid Res 46(2):230–236. doi:10.1194/jlr.M400416-JLR200

    Article  PubMed  CAS  Google Scholar 

  • Smith SJ, Cases S, Jensen DR, Chen HC, Sande E, Tow B, Sanan DA, Raber J, Eckel RH, Farese RV Jr (2000) Obesity resistance and multiple mechanisms of triglyceride synthesis in mice lacking DGAT. Nat Genet 25:87–90

    Google Scholar 

  • Storlien LH, Pan DA, Kriketos AD, O’Connor J, Caterson ID, Cooney GJ, Jenkins AB, Baur LA (1996) Skeletal muscle membrane lipids and insulin resistance. Lipids 31:S261–S265

    Article  PubMed  CAS  Google Scholar 

  • Switonski M, Stachowiak M, Cieslak J, Bartz M, Grzes M (2010) Genetics of fat tissue accumulation in pigs: a comparative approach. J Appl Genet 51:153–168

    Article  PubMed  CAS  Google Scholar 

  • Timmers S, Bosch JV, Heeeslink MK, Beurden DV, Schaart G, Ferraz MJ, Losen M, Martinez P, Baets MH, Aerts JM, Schrauwen P (2011) Paradoxical increase in TAG and DAG content parallel the insulin sensitizing effect of unilateral DGAT1 overexpression in rat skeletal muscle. PLoS One 6:e14503. doi:10.1371/journal.pone.0014503

    Article  PubMed  CAS  Google Scholar 

  • Yen CL, Stone SJ, Koliwad S, Harris C, Farese RV Jr (2008) Thematic review series: glycerolipids. DGAT enzymes and triacylglycerol biosynthesi. J Lipid Res 49(11):2283–2301. doi:10.1194/jlr.R800018-JLR200

    Article  PubMed  CAS  Google Scholar 

  • Yu YH, Ginsberg HN (2004) The role of acyl-CoA: diacylglycerol acyltransferase (DGAT) in energy metabolism. Ann Med 36:252–261

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Grants from the National Project for Breeding of Transgenic Pig (2008ZX08006-002), National Natural Science Foundation of China (30800782) and Agricultural Science Innovation Foundation of Hubei Province, China (2007-620).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuanzhu Xiong.

Additional information

The authors Ting Li and Dequan Xu contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, T., Xu, D., Zuo, B. et al. Ectopic overexpression of porcine DGAT1 increases intramuscular fat content in mouse skeletal muscle. Transgenic Res 22, 187–194 (2013). https://doi.org/10.1007/s11248-012-9633-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11248-012-9633-z

Keywords

Navigation