Skip to main content
Log in

Physiological effects of constitutive expression of Oilseed Rape Mosaic Tobamovirus (ORMV) movement protein in Arabidopsis thaliana

  • Short Communication
  • Published:
Transgenic Research Aims and scope Submit manuscript

Abstract

Movement proteins (MPs) are non-cell autonomous viral-encoded proteins that assist viruses in their cell-to-cell movement. The MP encoded by Tobamoviruses is the best characterized example among MPs of non-tubule-inducing plant RNA viruses. The MP of Oilseed Rape Mosaic Tobamovirus (ORMV) was transgenically expressed in Arabidopsis thaliana, ecotype RLD, under the expression of the 35S promoter from Cauliflower Mosaic Virus. Transgenic lines were obtained in sense and antisense orientations. One of the sense transgenic lines was further characterized turning out to carry one copy of the transgene inserted in the terminal region of the right arm of chromosome 1. The constitutive expression of ORMV-MP induced mild physiological effects in Arabidopsis. Plants of the transgenic line allowed a faster systemic movement of the phloem tracer carboxyfluorescein. The tracer was unloaded differentially in different flower parts, revealing differential effects of ORMV-MP on phloem unloading in sink organs. On the other hand, transgenic Arabidopsis did not show any effect on biomass partitioning or sugar availability, effects reported for equivalent transgenic solanaceous plants expressing the MP of Tobacco Mosaic Virus, another Tobamovirus. Finally, the transgenic Arabidopsis plants were susceptible to ORMV infection, although showing milder overall symptoms than non-transgenic controls. The results highlight the relevance of the specific host-virus system, in the physiological outcome of the molecular interactions established by MPs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Aguilar I, Sánchez F, Ponz F (2000) Different forms of interference between two Tobamoviruses in two different hosts. Plant Pathol 49:659–665

    Article  Google Scholar 

  • Aguilar I, Sánchez F, Martín AM, Martínez-Herrera D, Ponz F (1996) Nucleotide sequence of Chinese Rape Mosaic Virus (Oilseed Rape Mosaic Virus), a Crucifer Tobamovirus infectious on Arabidopsis thaliana. Plant Mol Biol 30:191–197

    Article  PubMed  CAS  Google Scholar 

  • Almon E, Horowitz M, Wang HL, Lucas WJ, Zamski E, Wolf S (1997) Phloem-specific expression of the Tobacco Mosaic Virus movement protein alters carbon metabolism and partitioning in transgenic potato plants. Plant Physiol 115:1599–1607

    PubMed  CAS  Google Scholar 

  • Arce-Johnson P, Kahn TW, Reimann-Philipp U, Rivera-Bustamante R, Beachy RN (1995) The amount of movement protein produced in transgenic plants influences the establishment, local movement, and systemic spread of infection by movement protein-deficient Tobacco Mosaic Virus. Mol Plant Microbe Interact 8:415–423

    CAS  Google Scholar 

  • Atkins D, Hull R, Wells B, Roberts K, Moore P, Beachy RN (1991) The Tobacco Mosaic Virus-30K movement protein in transgenic tobacco plants is localized to plasmodesmata. J Gen Virol 72:209–211

    PubMed  CAS  Google Scholar 

  • Balachandran S, Hull RJ, Vaadia Y, Wolf S, Lucas WJ (1995) Alteration in carbon partitioning induced by the movement protein of Tobacco Mosaic Virus originates in the mesophyll and is independent of change in the plasmodesmal size exclusion limit. Plant Cell Environ 18:1301–1310

    Article  CAS  Google Scholar 

  • Bevan M (1984) Binary Agrobacterium vectors for plant transformation. Nucleic Acids Res 12:8711–8721

    PubMed  CAS  Google Scholar 

  • Boyko V, Ferralli J, Ashby J, Schellenbaum P, Heinlein M (2000) Function of microtubules in intercellular transport of plant virus RNA. Nat Cell Biol 2:826–832

    Article  PubMed  CAS  Google Scholar 

  • Boyko V, Ashby JA, Suslova E, Ferralli J, Sterthaus O, Deom CM, Heinlein M (2002) Intramolecular complementing mutations in Tobacco Mosaic Virus movement protein confirm a role for microtubule association in viral RNA transport. J Virol 76:3974–3980

    Article  PubMed  CAS  Google Scholar 

  • Brill LM, Nunn RS, Kahn TW, Yeager M, Beachy RN (2000) Recombinant Tobacco Mosaic Virus movement protein is an RNA-binding, alpha-helical membrane protein. Proc Natl Acad Sci USA 97:7112–7117

    Article  PubMed  CAS  Google Scholar 

  • Brill LM, Dechongkit S, DeLaBarre B, Stroebel J, Beachy RN, Yeager M (2004) Dimerization of recombinant Tobacco Mosaic Virus movement protein. J Virol 78:3372–3377

    Article  PubMed  CAS  Google Scholar 

  • Chen MH, Citovsky V (2003) Systemic movement of a Tobamovirus requires host cell pectin methylesterase. Plant J 35:386–392

    Article  PubMed  CAS  Google Scholar 

  • Chen MH, Tian GW, Gafni Y, Citovsky V (2005) Effects of calreticulin on viral cell-to-cell movement. Plant Physiol 138:1866–1876

    Article  PubMed  CAS  Google Scholar 

  • Chen MH, Sheng JS, Hind G, Handa AK, Citovsky V (2000) Interaction between the Tobacco Mosaic Virus movement protein and host cell pectin methylesterases is required for viral cell-to-cell movement. EMBO J 19:913–920

    Article  PubMed  CAS  Google Scholar 

  • Cheng NH, Su CL, Carter SA, Nelson RS (2000) Vascular invasion routes and systemic accumulation patterns of Tobacco Mosaic Virus in Nicotiana benthamiana. Plant J 23:349–362

    Article  PubMed  CAS  Google Scholar 

  • Citovsky V, Knorr D, Schuster G, Zambryski P (1990) The P-30 movement protein of Tobacco Mosaic Virus is a single-strand nucleic-acid binding protein. Cell 60:637–647

    Article  PubMed  CAS  Google Scholar 

  • Citovsky V, McLean BG, Zupan JR, Zambryski P (1993) Phosphorylation of Tobacco Mosaic Virus cell-to-cell movement protein by a developmentally regulated plant cell wall-associated protein kinase. Genes Dev 7:904–910

    PubMed  CAS  Google Scholar 

  • Citovsky V, Ghoshroy S, Tsui F, Klessig D (1998) Non-toxic concentrations of cadmium inhibit systemic movement of Turnip Vein Clearing Virus by a salicylic acid-independent mechanism. Plant J 16:13–20

    Article  PubMed  CAS  Google Scholar 

  • Citovsky V, Wong ML, Shaw AL, Prasad BVV, Zambryski P (1992) Visualization and characterization of Tobacco Mosaic Virus movement protein binding to single-stranded nucleic-acids. Plant Cell 4:397–411

    Article  PubMed  CAS  Google Scholar 

  • Cooper B, Lapidot M, Heick JA, Dodds JA, Beachy RN (1995) A defective movement protein of TMV in transgenic plants confers resistance to multiple viruses whereas the functional analog increases susceptibility. Virology 206:307–313

    Article  PubMed  CAS  Google Scholar 

  • Dalmay T, Hamilton A, Mueller E, Baulcombe DC (2000) Potato Virus X amplicons in Arabidopsis mediate genetic and epigenetic gene silencing. Plant Cell 12:369–379

    Article  PubMed  CAS  Google Scholar 

  • Dardick CD, Golem S, Culver JN (2000) Susceptibility and symptom development in Arabidopsis thaliana to Tobacco Mosaic Virus is influenced by virus cell-to-cell movement. Mol Plant Microbe Interact 13:1139–1144

    PubMed  CAS  Google Scholar 

  • Deom CM, Schubert KR, Wolf S, Holt CA, Lucas WJ, Beachy RN (1990) Molecular characterization and biological function of the movement protein of Tobacco Mosaic Virus in transgenic plants. Proc Natl Acad Sci USA 87:3284–3288

    Article  PubMed  CAS  Google Scholar 

  • Ding B, Haudenshield JS, Hull RJ, Wolf S, Beachy RN, Lucas WJ (1992) Secondary plasmodesmata are specific sites of localization of the Tobacco Mosaic Virus movement protein in transgenic tobacco plants. Plant Cell 4:915–928

    Article  PubMed  CAS  Google Scholar 

  • Ding XS, Carter SA, Deom CM, Nelson RS (1998) Tobamovirus and Potyvirus accumulation in minor veins of inoculated leaves from representatives of the Solanaceae and Fabaceae. Plant Physiol 116:125–136

    Article  CAS  Google Scholar 

  • Dorokhov YL, Makinen K, Frolova OY, Merits A, Saarinen J, Kalkkinen N, Atabekov JG, Saarma M (1999) A novel function for a ubiquitous plant enzyme pectin methylesterase: the host–cell receptor for the Tobacco Mosaic Virus movement protein. FEBS Lett 461:223–228

    Article  PubMed  CAS  Google Scholar 

  • Gafny R, Lapidot M, Berna A, Holt CA, Deom CM, Beachy RN (1992) Effects of terminal deletion mutations on function of the movement protein of Tobacco Mosaic Virus. Virology 187:499–507

    Article  PubMed  CAS  Google Scholar 

  • Gamalei YV (2002) Assimilate transport and partitioning in plants: approaches, methods, and facets of research. Russ J Plant Physiol 49:22–39

    Google Scholar 

  • Ghoshroy S, Freedman K, Lartey R, Citovsky V (1998) Inhibition of plant viral systemic infection by non-toxic concentrations of cadmium. Plant J 13:591–602

    Article  PubMed  CAS  Google Scholar 

  • Gillespie T, Boevink P, Haupt S, Roberts AG, Toth R, Valentine T, Chapman S, Oparka KJ (2002) Functional analysis of a DNA-shuffled movement protein reveals that microtubules are dispensable for the cell-to-cell movement of Tobacco Mosaic Virus. Plant Cell 14:1207–1222

    Article  PubMed  CAS  Google Scholar 

  • Haritatos E, Medville R, Turgeon R (2000) Minor vein structure and sugar transport in Arabidopsis thaliana. Planta 211:105–111

    Article  PubMed  CAS  Google Scholar 

  • Heinlein M, Epel BL, Padgett HS, Beachy RN (1995) Interaction of Tobamovirus movement proteins with plant cytoskeleton. Science 270:1983–1985

    Article  PubMed  CAS  Google Scholar 

  • Heinlein M, Padgett HS, Gens JS, Pickard BG, Casper SJ, Epel BL, Beachy RN (1998) Changing patterns of localization of the Tobacco Mosaic Virus movement protein and replicase to the endoplasmic reticulum and microtubules during infection. Plant Cell 10:1107–1120

    Article  PubMed  CAS  Google Scholar 

  • Hull R (2002) Matthew’s plant virology. Academic Press, New York

  • Iglesias VA, Meins F (2000) Movement of plant viruses is delayed in a beta-1,3-glucanase-deficient mutant showing a reduced plasmodesmatal size exclusion limit and enhanced callose deposition. Plant J 21:157–166

    Article  PubMed  CAS  Google Scholar 

  • Imlau A, Truernit E, Sauer N (1999) Cell-to-cell and long-distance trafficking of the green fluorescent protein in the phloem and symplastic unloading of the protein into sink tissues. Plant Cell 11:309–322

    Article  PubMed  CAS  Google Scholar 

  • Itaya A, Liang GQ, Woo YM, Nelson RS, Ding B (2000) Nonspecific intercellular protein trafficking probed by green fluorescent protein in plants. Protoplasma 213:165–175

    Article  CAS  Google Scholar 

  • Kawakami S, Watanabe Y, Beachy RN (2004) Tobacco Mosaic Virus infection spreads cell to cell as intact replication complexes. Proc Natl Acad Sci USA 101:6291–6296

    Article  PubMed  CAS  Google Scholar 

  • Kragler F, Curin M, Trutnyeva K, Gansch A, Waigmann E (2003) MPB2C, a microtubule-associated plant protein binds to and interferes with cell-to-cell transport of Tobacco Mosaic Virus movement protein. Plant Physiol 132:1870–1883

    Article  PubMed  CAS  Google Scholar 

  • Lapidot M, Gafny R, Ding B, Wolf S, Lucas WJ, Beachy RN (1993) A dysfunctional movement protein of Tobacco Mosaic Virus that partially modifies the plasmodesmata and limits virus spread in transgenic plants. Plant J 4:959–970

    Article  CAS  Google Scholar 

  • Leisner SM, Howell SH (1993) Long-distance movement of viruses in plants. Trends Microbiol 1:314–317

    Article  PubMed  CAS  Google Scholar 

  • Leisner SM, Turgeon R (1993) Movement of virus and photoassimilate in the phloem – A comparative analysis. Bioessays 15:741–748

    Article  PubMed  CAS  Google Scholar 

  • Lucas WJ, Wolf S (1999) Connections between virus movement, macromolecular signaling and assimilate allocation. Curr Opin Plant Biol 2:192–197

    Article  PubMed  CAS  Google Scholar 

  • Lucas WJ, Lee JY (2004) Plant cell biology – Plasmodesmata as a supracellular control network in plants. Nat Rev Mol Cell Biol 5:712–726

    Article  PubMed  CAS  Google Scholar 

  • Lucas WJ, Olesinski A, Hull RJ, Haudenshield JS, Deom CM, Beachy RN, Wolf S (1993) Influence of the Tobacco Mosaic Virus 30 kDa movement protein on carbon metabolism and photosynthate partitioning in transgenic tobacco plants. Planta 190:88–96

    Article  CAS  Google Scholar 

  • Malyshenko SI, Kondakova OA, Nazarova JV, Kaplan IB, Taliansky ME, Atabekov JG (1993) Reduction of Tobacco Mosaic Virus accumulation in transgenic plants producing non-functional viral transport proteins. J Gen Virol 74:1149–1156

    Article  PubMed  CAS  Google Scholar 

  • Martín AM, MartínezHerrera D, Poch H, Ponz F (1997) Variability in the interactions between Arabidopsis thaliana ecotypes and Oilseed Rape Mosaic Tobamovirus. Aust J Plant Physiol 24:275–281

    Article  Google Scholar 

  • Más P, Beachy RN (1999) Replication of Tobacco Mosaic␣Virus on endoplasmic reticulum and role of the cytoskeleton and Virus movement protein in intracellular distribution of viral RNA. J Cell Biol 147:945–958

    Article  PubMed  Google Scholar 

  • Matsushita Y, Deguchi M, Youda M, Nishiguchi M, Nyunoya H (2001) The Tomato Mosaic Tobamovirus movement protein interacts with a putative transcriptional coactivator KELP. Mol Cells 12:57–66

    PubMed  CAS  Google Scholar 

  • Mclean BG, Zupan J, Zambryski PC (1995) Tobacco Mosaic Virus movement protein associates with the cytoskeleton in tobacco cells. Plant Cell 7:2101–2114

    Article  PubMed  CAS  Google Scholar 

  • Melcher U (2000) The ‘30K’ superfamily of viral movement proteins. J Gen Virol 81:257–266

    PubMed  CAS  Google Scholar 

  • Melcher U (2003) Turnip Vein-Clearing Virus, from pathogen to host expression profile. Mol Plant Pathol 4:133–140

    Article  Google Scholar 

  • Moore PJ, Fenczik CA, Deom CM, Beachy RN (1992) Development changes in plasmodesmata in transgenic tobacco expressing the movement protein of Tobacco Mosaic Virus. Protoplasma 170:115–127

    Article  Google Scholar 

  • Murillo I, Roca R, Bortolotti C, SanSegundo B (2003) Engineering photoassimilate partitioning in tobacco plants improves growth and productivity and provides pathogen resistance. Plant J 36:330–341

    Article  PubMed  CAS  Google Scholar 

  • Nagy F, Kay SA, Chua NH (1988) Analysis of gene expression in transgenic plants. In: Gelvin SB, Schilperoort RA, Verma DPS (eds) Plant molecular biology manual, B4. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp 1–29

  • Nolasco G, de Blas C, Torres V, Ponz F (1993) A method combining immunocapture and PCR amplification in a microtiter plate for the detection of plant viruses and subviral pathogens. J Virol Methods 45:201–218

    Article  PubMed  CAS  Google Scholar 

  • Olesinski AA, Lucas WJ, Galun E, Wolf S (1995) Pleiotropic effects of Tobacco Mosaic Virus movement protein on carbon metabolism in transgenic tobacco plants. Planta 197:118–126

    Article  CAS  Google Scholar 

  • Olesinski AA, Almon E, Navot N, Perl A, Galun E, Lucas WJ, Wolf S (1996) Tissue-specific expression of the Tobacco Mosaic Virus movement protein in transgenic potato plants alters plasmodesmal function and carbohydrate partitioning. Plant Physiol 111:541–550

    PubMed  CAS  Google Scholar 

  • Oparka KJ (2004) Getting the message across: how do plant cells exchange macromolecular complexes? Trends Plant Sci 9:33–41

    Article  PubMed  CAS  Google Scholar 

  • Oparka KJ, Cruz SS (2000) The great escape: phloem transport and unloading of macromolecules. Annu Rev Plant Physiol Plant Mol Biol 51:323–347

    Article  PubMed  CAS  Google Scholar 

  • Oparka KJ, Prior DAM, Santa Cruz S, Padgett HS, Beachy RN (1997) Gating of epidermal plasmodesmata is restricted to the leading edge of expanding infection sites of Tobacco Mosaic Virus (TMV). Plant J 12:781–789

    Article  PubMed  CAS  Google Scholar 

  • Reichel C, Beachy RN (2000) Degradation of Tobacco Mosaic Virus movement protein by the 26S proteasome. J Virol 74:3330–3337

    Article  PubMed  CAS  Google Scholar 

  • Roberts AG, Santa Cruz S, Roberts IM, Prior DAM, Turgeon R, Oparka KJ (1997) Phloem unloading in sink leaves of Nicotiana benthamiana: comparison of a fluorescent solute with a Fluorescent Virus. Plant Cell 9:1381–1396

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. Edited by Cold Spring Harbor Laboratory, 3 vols. Cold Spring Harbor, NY

  • Tomenius K, Clapham D, Meshi T (1987) Localization by immunogold cytochemistry of the virus-coded 30k protein in plasmodesmata of leaves infected with Tobacco Mosaic Virus. Virology 160:363–371

    Article  CAS  PubMed  Google Scholar 

  • Töpfer R, Matzeit V, Gronenborn B, Schell J, Steinbiss H-H (1987) A set of plant expression vectors for transcriptional and translational fusions. Nucleic Acids Res 15:5890

    PubMed  Google Scholar 

  • Ueki S, Citovsky V (2001) Inhibition of systemic onset of post-transcriptional gene silencing by non-toxic concentrations of cadmium. Plant J 28:283–291

    Article  PubMed  CAS  Google Scholar 

  • Valvekens D, Van Montagu M, Van Lijsebettens M (1988) Agrobacterium tumefaciens-mediated transformation of Arabidopsis thaliana root explants by using kanamycin selection. Proc Natl Acad Sci USA 85:5536–5540

    Article  PubMed  CAS  Google Scholar 

  • Van Bel AJE (2003) The phloem, a miracle of ingenuity. Plant Cell Environ 26:125–149

    Article  Google Scholar 

  • Waigmann E, Zambryski P (1995) Tobacco Mosaic Virus movement protein-mediated protein transport between trichome cells. Plant Cell 7:2069–2079

    Article  PubMed  CAS  Google Scholar 

  • Waigmann E, Lucas WJ, Citovsky V, Zambryski P (1994) Direct functional assay for Tobacco Mosaic Virus cell-to-cell movement protein and identification of a domain involved in increasing plasmodesmal permeability. Proc Natl Acad Sci USA 91:1433–1437

    Article  PubMed  CAS  Google Scholar 

  • Waigmann E, Ueki S, Trutnyeva K, Citovsky V (2004) The ins and outs of nondestructive cell-to-cell and systemic movement of plant viruses. Crit Rev Plant Sci 23:195–250

    Article  CAS  Google Scholar 

  • Watanabe Y, Ogawa T, Okada Y (1992) In vivo phosphorylation of the 30-kDa protein of Tobacco Mosaic Virus. FEBS Lett 313:181–184

    Article  PubMed  CAS  Google Scholar 

  • Weber H, Ohnesorge S, Silber MV, Pfitzner AJP (2004) The Tomato Mosaic Virus 30 kDa movement protein interacts differentially with the resistance genes Tm-2 and Tm-2(2). Arch Virol 149:1499–1514

    Article  PubMed  CAS  Google Scholar 

  • Wolf S, Deom CM, Beachy RN, Lucas WJ (1989) Movement protein of Tobacco Mosaic Virus modifies plasmodesmatal size exclusion limit. Science 246:377–379

    Article  PubMed  CAS  Google Scholar 

  • Zambryski P (2004) Cell-to-cell transport of proteins and fluorescent tracers via plasmodesmata during plant development. J Cell Biol 164:165–168

    Article  PubMed  CAS  Google Scholar 

  • Zhu YL, Green L, Woo YM, Owens R, Ding B (2001) Cellular basis of potato spindle tuber viroid systemic movement. Virology 279:69–77

    Article  PubMed  CAS  Google Scholar 

  • Zhu YL, Qi YJ, Xun Y, Owens R, Ding B (2002) Movement of potato spindle tuber viroid reveals regulatory points of phloem-mediated RNA traffic. Plant Physiol 130:138–146

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by grants BIO95-0766 and BIO2002-02191 of the Spanish National R+D Plan. CM and IA were the holders of predoctoral fellowships from INIA and the Autonomous Community of Madrid, respectively. We thank Margarita Calvo for her excellent technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando Ponz.

Additional information

C. Mansilla and I. Aguilar contributed equally.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mansilla, C., Aguilar, I., Martínez-Herrera, D. et al. Physiological effects of constitutive expression of Oilseed Rape Mosaic Tobamovirus (ORMV) movement protein in Arabidopsis thaliana . Transgenic Res 15, 761–770 (2006). https://doi.org/10.1007/s11248-006-9017-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11248-006-9017-3

Keywords

Navigation