Skip to main content
Log in

Application of Biochar-Based Catalysts for Soil and Water Pollution Control

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Biochar materials produced from biomass pyrolysis offer promising functionality as sustainable and eco-friendly catalysts for activating peroxides and persulfates to treat aqueous and soil contaminants. This review summarizes recent progress, mechanistic insights, and future research needs regarding multifaceted biochar catalyst systems for in-situ remediation. For water treatment, biochar composites with transition metals, metal oxides, advanced carbon materials and heteroatom dopants have shown excellent activity for contaminant mineralization. Over 90–100% removal was achieved for dyes, pharmaceuticals, pesticides and hydrocarbons through redox, Fenton-like, sonocatalytic and photocatalytic pathways. In soil, amendments with tailored biochars reduced bioavailability and stimulated biotic/abiotic degradation of organics like PAHs and phthalates. Over 80–90% of phenanthrene, petroleum hydrocarbons and heavy metals were remediated via immobilization, electron transfer to pollutants, and activation of peroxides. Spectroscopic evidence suggests generation of reactive radicals along with direct electron transfer contributes appreciably. However, large-scale field testing is required to evaluate technological viability and environmental impacts. Overall, creative integration of green chemistry with remediation goals positions functionalized biochar catalysts well to address pressing soil and water pollution while advancing sustainability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

Data sharing is not applicable to this article as no new data were created or analyzed in this study.

References

  1. Ossai IC, Ahmed A, Hassan A, Hamid FS (2020) Remediation of soil and water contaminated with petroleum hydrocarbon: a review. Environ Technol Innov 17:100526. https://doi.org/10.1016/j.eti.2019.100526

    Article  CAS  Google Scholar 

  2. Ahmad W, Alharthy RD, Zubair M et al (2021) Toxic and heavy metals contamination assessment in soil and water to evaluate human health risk. Sci Rep 11:17006. https://doi.org/10.1038/s41598-021-94616-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Nico OMS, de Azevedo RC, de Tomi G (2021) Remotely operated vehicle-based methodology for the reduction of costs and operational delays associated with rock dredging for channel deepening. HOLOS 1:1–21

    Article  Google Scholar 

  4. Hussain A, Rehman F, Rafeeq H et al (2022) In-situ, ex-situ, and nano-remediation strategies to treat polluted soil, water, and air—a review. Chemosphere 289:133252. https://doi.org/10.1016/j.chemosphere.2021.133252

    Article  CAS  PubMed  Google Scholar 

  5. Zhao C, Shao B, Yan M et al (2021) Activation of peroxymonosulfate by biochar-based catalysts and applications in the degradation of organic contaminants: a review. Chem Eng J 416:128829. https://doi.org/10.1016/j.cej.2021.128829

    Article  CAS  Google Scholar 

  6. Velusamy K, Devanand J, Senthil Kumar P et al (2021) A review on nano-catalysts and biochar-based catalysts for biofuel production. Fuel 306:121632. https://doi.org/10.1016/j.fuel.2021.121632

    Article  CAS  Google Scholar 

  7. Qiu M, Hu B, Chen Z et al (2021) Challenges of organic pollutant photocatalysis by biochar-based catalysts. Biochar 3:117–123. https://doi.org/10.1007/s42773-021-00098-y

    Article  CAS  Google Scholar 

  8. Do Minh T, Song J, Deb A et al (2020) Biochar based catalysts for the abatement of emerging pollutants: a review. Chem Eng J 394:124856. https://doi.org/10.1016/j.cej.2020.124856

    Article  CAS  Google Scholar 

  9. Yang B, Dai J, Zhao Y et al (2022) Advances in preparation, application in contaminant removal, and environmental risks of biochar-based catalysts: a review. Biochar 4:51. https://doi.org/10.1007/s42773-022-00169-8

    Article  CAS  Google Scholar 

  10. Wang W, Chen M (2022) Catalytic degradation of sulfamethoxazole by peroxymonosulfate activation system composed of nitrogen-doped biochar from pomelo peel: important roles of defects and nitrogen, and detoxification of intermediates. J Colloid Interface Sci 613:57–70. https://doi.org/10.1016/j.jcis.2022.01.006

    Article  CAS  PubMed  Google Scholar 

  11. Chi NTL, Anto S, Ahamed TS et al (2021) A review on biochar production techniques and biochar based catalyst for biofuel production from algae. Fuel 287:119411. https://doi.org/10.1016/j.fuel.2020.119411

    Article  CAS  Google Scholar 

  12. Luo J, Gao Y, Song T, Chen Y (2021) Activation of peroxymonosulfate by biochar and biochar-based materials for degrading refractory organics in water: a review. Water Sci Technol 83:2327–2344

    Article  CAS  PubMed  Google Scholar 

  13. Wang J, Cai J, Wang S et al (2022) Biochar-based activation of peroxide: multivariate-controlled performance, modulatory surface reactive sites and tunable oxidative species. Chem Eng J 428:131233. https://doi.org/10.1016/j.cej.2021.131233

    Article  CAS  Google Scholar 

  14. Shi Q, Deng S, Zheng Y et al (2022) The application of transition metal-modified biochar in sulfate radical based advanced oxidation processes. Environ Res 212:113340. https://doi.org/10.1016/j.envres.2022.113340

    Article  CAS  PubMed  Google Scholar 

  15. Zhao C, Wang B, Theng BKG et al (2021) Formation and mechanisms of nano-metal oxide-biochar composites for pollutants removal: a review. Sci Total Environ 767:145305. https://doi.org/10.1016/j.scitotenv.2021.145305

    Article  CAS  PubMed  Google Scholar 

  16. Liu R, Zhang Y, Hu B, Wang H (2022) Improved Pb(II) removal in aqueous solution by sulfide@biochar and polysaccharose-FeS@ biochar composites: efficiencies and mechanisms. Chemosphere 287:132087. https://doi.org/10.1016/j.chemosphere.2021.132087

    Article  CAS  PubMed  Google Scholar 

  17. Pusceddu E, Santilli SF, Fioravanti G et al (2019) Chemical-physical analysis and exfoliation of biochar-carbon matter: from agriculture soil improver to starting material for advanced nanotechnologies. Mater Res Express 6:115612. https://doi.org/10.1088/2053-1591/ab4ba8

    Article  Google Scholar 

  18. Hassaan MA, Elkatory MR, El-Nemr MA et al (2023) Application of multi-heteroatom doping biochar in a newly proposed mechanism of electron transfer in biogas production. Chem Eng J 470:144229. https://doi.org/10.1016/j.cej.2023.144229

    Article  CAS  Google Scholar 

  19. Gupta AD, Singh H, Varjani S et al (2022) A critical review on biochar-based catalysts for the abatement of toxic pollutants from water via advanced oxidation processes (AOPs). Sci Total Environ 849:157831. https://doi.org/10.1016/j.scitotenv.2022.157831

    Article  CAS  PubMed  Google Scholar 

  20. Van Zwieten L, Kimber S, Morris S et al (2010) Effects of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility. Plant Soil 327:235–246

    Article  Google Scholar 

  21. Fryda L, Visser R (2015) Biochar for soil improvement: Evaluation of biochar from gasification and slow pyrolysis. Agriculture 5:1076–1115

    Article  CAS  Google Scholar 

  22. Ronsse F, van Hecke S, Dickinson D, Prins W (2013) Production and characterization of slow pyrolysis biochar: influence of feedstock type and pyrolysis conditions. GCB Bioenergy 5:104–115. https://doi.org/10.1111/gcbb.12018

    Article  CAS  Google Scholar 

  23. Manyà JJ, Azuara M, Manso JA (2018) Biochar production through slow pyrolysis of different biomass materials: seeking the best operating conditions. Biomass Bioenerg 117:115–123. https://doi.org/10.1016/j.biombioe.2018.07.019

    Article  CAS  Google Scholar 

  24. Kim KH, Kim J-Y, Cho T-S, Choi JW (2012) Influence of pyrolysis temperature on physicochemical properties of biochar obtained from the fast pyrolysis of pitch pine (Pinus rigida). Biores Technol 118:158–162. https://doi.org/10.1016/j.biortech.2012.04.094

    Article  CAS  Google Scholar 

  25. Shen Q, Wu H (2023) Rapid pyrolysis of biochar prepared from slow and fast pyrolysis: the effects of particle residence time on char properties. Proc Combust Inst 39:3371–3378

    Article  CAS  Google Scholar 

  26. Balashov E, Buchkina N, Šimanský V, Horák J (2021) Effects of slow and fast pyrolysis biochar on no emissions and water availability of two soils with high water-filled pore space. J Hydrol Hydromech 69:467–474

    Article  CAS  Google Scholar 

  27. Brewer CE, Schmidt-Rohr K, Satrio JA, Brown RC (2009) Characterization of biochar from fast pyrolysis and gasification systems. Environ Prog Sustain Energy 28:386–396. https://doi.org/10.1002/ep.10378

    Article  CAS  Google Scholar 

  28. Brewer CE, Hu Y, Schmidt-Rohr K et al (2012) Extent of pyrolysis impacts on fast pyrolysis biochar properties. J Environ Qual 41:1115–1122

    Article  CAS  PubMed  Google Scholar 

  29. Brown TR, Wright MM, Brown RC (2011) Estimating profitability of two biochar production scenarios: slow pyrolysis vs fast pyrolysis. Biofuels Bioprod Biorefin 5:54–68. https://doi.org/10.1002/bbb.254

    Article  CAS  Google Scholar 

  30. Nguyen T-B, Truong Q-M, Chen C-W et al (2022) Mesoporous and adsorption behavior of algal biochar prepared via sequential hydrothermal carbonization and ZnCl2 activation. Biores Technol 346:126351. https://doi.org/10.1016/j.biortech.2021.126351

    Article  CAS  Google Scholar 

  31. Chen C, Liu G, An Q et al (2020) From wasted sludge to valuable biochar by low temperature hydrothermal carbonization treatment: Insight into the surface characteristics. J Clean Prod 263:121600. https://doi.org/10.1016/j.jclepro.2020.121600

    Article  CAS  Google Scholar 

  32. Hossain N, Nizamuddin S, Griffin G et al (2020) Synthesis and characterization of rice husk biochar via hydrothermal carbonization for wastewater treatment and biofuel production. Sci Rep 10:18851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Oliveira I, Blöhse D, Ramke H-G (2013) Hydrothermal carbonization of agricultural residues. Bioresour Technol 142:138–146. https://doi.org/10.1016/j.biortech.2013.04.125

    Article  CAS  PubMed  Google Scholar 

  34. Sharma R, Jasrotia K, Singh N et al (2020) A comprehensive review on hydrothermal carbonization of biomass and its applications. Chem Afr 3:1–19. https://doi.org/10.1007/s42250-019-00098-3

    Article  CAS  Google Scholar 

  35. Hansen V, Müller-Stöver D, Ahrenfeldt J et al (2015) Gasification biochar as a valuable by-product for carbon sequestration and soil amendment. Biomass Bioenerg 72:300–308. https://doi.org/10.1016/j.biombioe.2014.10.013

    Article  CAS  Google Scholar 

  36. You S, Ok YS, Tsang DCW et al (2018) Towards practical application of gasification: a critical review from syngas and biochar perspectives. Crit Rev Environ Sci Technol 48:1165–1213. https://doi.org/10.1080/10643389.2018.1518860

    Article  CAS  Google Scholar 

  37. You S, Ok YS, Chen SS et al (2017) A critical review on sustainable biochar system through gasification: energy and environmental applications. Biores Technol 246:242–253. https://doi.org/10.1016/j.biortech.2017.06.177

    Article  CAS  Google Scholar 

  38. Park J-H, Wang JJ, Xiao R, Tafti N, DeLaune RD, Seo D-C (2018) Degradation of Orange G by Fenton-like reaction with Fe-impregnated biochar catalyst. Bioresour Technol 249:368–376. https://doi.org/10.1016/j.biortech.2017.10.030

    Article  CAS  PubMed  Google Scholar 

  39. Park J-H, Wang JJ, Park KH, Seo D-C (2020) Heterogeneous fenton oxidation of methylene blue with Fe-impregnated biochar catalyst. Biochar 2:165–176. https://doi.org/10.1007/s42773-020-00051-5

    Article  Google Scholar 

  40. Zhang S, Wang J, Zhu S et al (2020) Effects of MgCl2 and Mg(NO3)2 loading on catalytic pyrolysis of sawdust for bio-oil and MgO-impregnated biochar production. J Anal Appl Pyrol 152:104962. https://doi.org/10.1016/j.jaap.2020.104962

    Article  CAS  Google Scholar 

  41. Yang M-T, Du Y, Tong W-C et al (2019) Cobalt-impregnated biochar produced from CO2-mediated pyrolysis of Co/lignin as an enhanced catalyst for activating peroxymonosulfate to degrade acetaminophen. Chemosphere 226:924–933. https://doi.org/10.1016/j.chemosphere.2019.04.004

    Article  CAS  PubMed  Google Scholar 

  42. Park J-H, Wang JJ, Seo D-C (2021) Comparison of catalytic activity for treating recalcitrant organic pollutant in heterogeneous Fenton oxidation with iron-impregnated biochar and activated carbon. J Water Process Eng 42:102141. https://doi.org/10.1016/j.jwpe.2021.102141

    Article  Google Scholar 

  43. Rubeena KK, Hari Prasad Reddy P, Laiju AR, Nidheesh PV (2018) Iron impregnated biochars as heterogeneous Fenton catalyst for the degradation of acid red 1 dye. J Environ Manage 226:320–328. https://doi.org/10.1016/j.jenvman.2018.08.055

    Article  CAS  PubMed  Google Scholar 

  44. Mustafa FS, Hama Aziz KH (2023) Heterogeneous catalytic activation of persulfate for the removal of rhodamine B and diclofenac pollutants from water using iron-impregnated biochar derived from the waste of black seed pomace. Process Saf Environ Prot 170:436–448. https://doi.org/10.1016/j.psep.2022.12.030

    Article  CAS  Google Scholar 

  45. Peter A, Chabot B, Loranger E (2021) Pre- and post-pyrolysis effects on iron impregnation of ultrasound pre-treated softwood biochar for potential catalysis applications. SN Appl Sci 3:643. https://doi.org/10.1007/s42452-021-04636-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Park J-H, Wang JJ, Tafti N, Delaune RD (2019) Removal of eriochrome black T by sulfate radical generated from Fe-impregnated biochar/persulfate in Fenton-like reaction. J Ind Eng Chem 71:201–209. https://doi.org/10.1016/j.jiec.2018.11.026

    Article  CAS  Google Scholar 

  47. Cho DW, Kim S, Tsang DCW et al (2018) Contribution of pyrolytic gas medium to the fabrication of co-impregnated biochar. J CO2 Util. https://doi.org/10.1016/j.jcou.2018.06.003

    Article  Google Scholar 

  48. Ido AL, de Luna MDG, Ong DC, Capareda SC (2019) Upgrading of scenedesmus obliquus oil to high-quality liquid-phase biofuel by nickel-impregnated biochar catalyst. J Clean Prod 209:1052–1060. https://doi.org/10.1016/j.jclepro.2018.10.028

    Article  CAS  Google Scholar 

  49. Sajjadi B, Chen W-Y, Egiebor NO (2019) A comprehensive review on physical activation of biochar for energy and environmental applications. Rev Chem Eng 35:735–776. https://doi.org/10.1515/revce-2017-0113

    Article  CAS  Google Scholar 

  50. Wenchao Y, Lian F, Cui G, Liu Z (2018) N-doping effectively enhances the adsorption capacity of biochar for heavy metal ions from aqueous solution. Chemosphere 193:8–16. https://doi.org/10.1016/j.chemosphere.2017.10.134

    Article  CAS  Google Scholar 

  51. Ding D, Yang S, Qian X et al (2020) Nitrogen-doping positively whilst sulfur-doping negatively affect the catalytic activity of biochar for the degradation of organic contaminant. Appl Catal B 263:118348. https://doi.org/10.1016/j.apcatb.2019.118348

    Article  CAS  Google Scholar 

  52. Tang W, Zanli BLGL, Chen J (2021) O/N/P-doped biochar induced to enhance adsorption of sulfonamide with coexisting Cu2+/Cr(VI) by air pre-oxidation. Biores Technol 341:125794. https://doi.org/10.1016/j.biortech.2021.125794

    Article  CAS  Google Scholar 

  53. Amen R, Bashir H, Bibi I et al (2020) A critical review on arsenic removal from water using biochar-based sorbents: the significance of modification and redox reactions. Chem Eng J 396:125195. https://doi.org/10.1016/j.cej.2020.125195

    Article  CAS  Google Scholar 

  54. Yuan Y, Bolan N, Prévoteau A et al (2017) Applications of biochar in redox-mediated reactions. Biores Technol 246:271–281. https://doi.org/10.1016/j.biortech.2017.06.154

    Article  CAS  Google Scholar 

  55. Feng Y, Xu Y, Xie X et al (2021) The dual role of oxygen in redox-mediated removal of aqueous arsenic(III/V) by Fe-modified biochar. Biores Technol 340:125674. https://doi.org/10.1016/j.biortech.2021.125674

    Article  CAS  Google Scholar 

  56. Zeng L, Chen Q, Tan Y et al (2021) Dual roles of biochar redox property in mediating 2,4-dichlorophenol degradation in the presence of Fe3+ and persulfate. Chemosphere 279:130456. https://doi.org/10.1016/j.chemosphere.2021.130456

    Article  CAS  PubMed  Google Scholar 

  57. Deng R, Luo H, Huang D, Zhang C (2020) Biochar-mediated Fenton-like reaction for the degradation of sulfamethazine: role of environmentally persistent free radicals. Chemosphere 255:126975. https://doi.org/10.1016/j.chemosphere.2020.126975

    Article  CAS  PubMed  Google Scholar 

  58. Afzal MZ, Zu P, Zhang C-M et al (2022) Sonocatalytic degradation of ciprofloxacin using hydrogel beads of TiO2 incorporated biochar and chitosan. J Hazard Mater 434:128879. https://doi.org/10.1016/j.jhazmat.2022.128879

    Article  CAS  PubMed  Google Scholar 

  59. Gholami P, Dinpazhoh L, Khataee A, Orooji Y (2019) Sonocatalytic activity of biochar-supported ZnO nanorods in degradation of gemifloxacin: synergy study, effect of parameters and phytotoxicity evaluation. Ultrason Sonochem 55:44–56. https://doi.org/10.1016/j.ultsonch.2019.03.001

    Article  CAS  PubMed  Google Scholar 

  60. Li Z, Sun Y, Yang Y et al (2020) Biochar-supported nanoscale zero-valent iron as an efficient catalyst for organic degradation in groundwater. J Hazard Mater 383:121240. https://doi.org/10.1016/j.jhazmat.2019.121240

    Article  CAS  PubMed  Google Scholar 

  61. Zhang Y, Jiang Q, Jiang S et al (2021) One-step synthesis of biochar supported nZVI composites for highly efficient activating persulfate to oxidatively degrade atrazine. Chem Eng J 420:129868. https://doi.org/10.1016/j.cej.2021.129868

    Article  CAS  Google Scholar 

  62. Jiang Q, Jiang S, Li H et al (2022) A stable biochar supported S-nZVI to activate persulfate for effective dichlorination of atrazine. Chem Eng J 431:133937. https://doi.org/10.1016/j.cej.2021.133937

    Article  CAS  Google Scholar 

  63. Wang M, Zhao Z, Zhang Y (2021) Magnetite-contained biochar derived from Fenton sludge modulated electron transfer of microorganisms in anaerobic digestion. J Hazard Mater 403:123972. https://doi.org/10.1016/j.jhazmat.2020.123972

    Article  CAS  PubMed  Google Scholar 

  64. Arkaan MF, Ekaputri RF, Fatimah I, Kamari A (2020) Physicochemical and photocatalytic activity of hematite/biochar nanocomposite prepared from salacca skin waste. Sustain Chem Pharm 16:100261. https://doi.org/10.1016/j.scp.2020.100261

    Article  Google Scholar 

  65. Raja S, Eshwar D, Natarajan S et al (2023) Biochar supported manganese based catalyst for low-temperature selective catalytic reduction of nitric oxide. Clean Technol Environ Policy 25:1109–1118. https://doi.org/10.1007/s10098-022-02274-5

    Article  CAS  Google Scholar 

  66. Jung K-W, Lee SY, Lee YJ, Choi J-W (2019) Ultrasound-assisted heterogeneous Fenton-like process for bisphenol a removal at neutral pH using hierarchically structured manganese dioxide/biochar nanocomposites as catalysts. Ultrason Sonochem 57:22–28. https://doi.org/10.1016/j.ultsonch.2019.04.039

    Article  CAS  PubMed  Google Scholar 

  67. Zhang Q, Sun Y, Xu W et al (2023) Efficient microwave-assisted mineralization of oxytetracycline driven by persulfate and hypochlorite over Cu-biochar catalyst. Biores Technol 372:128698. https://doi.org/10.1016/j.biortech.2023.128698

    Article  CAS  Google Scholar 

  68. Fuente-Hernández A, Lee R, Béland N et al (2017) Reduction of furfural to furfuryl alcohol in liquid phase over a biochar-supported platinum catalyst. Energies 10:286. https://doi.org/10.3390/en10030286

    Article  CAS  Google Scholar 

  69. Shi J, Wang J, Liang L et al (2021) Carbothermal synthesis of biochar-supported metallic silver for enhanced photocatalytic removal of methylene blue and antimicrobial efficacy. J Hazard Mater 401:123382. https://doi.org/10.1016/j.jhazmat.2020.123382

    Article  CAS  PubMed  Google Scholar 

  70. Gao Y, Xu S, Yue Q et al (2016) Synthesis and characterization of heteroatom-enriched biochar from keratin-based and algous-based wastes. Adv Powder Technol 27:1280–1286. https://doi.org/10.1016/j.apt.2016.04.018

    Article  CAS  Google Scholar 

  71. Zhang C, Zhang L, Gao J et al (2020) Evolution of the functional groups/structures of biochar and heteroatoms during the pyrolysis of seaweed. Algal Res 48:101900. https://doi.org/10.1016/j.algal.2020.101900

    Article  Google Scholar 

  72. Li D, Fu M, Pei T et al (2023) Preparation of nitrogen-containing compounds and nitrogen-doped biochar via nitrogen-rich pyrolysis coupled with ammonia source impregnation. J Environ Chem Eng 11:110093. https://doi.org/10.1016/j.jece.2023.110093

    Article  CAS  Google Scholar 

  73. Mian MM, Liu G, Zhou H (2020) Preparation of N-doped biochar from sewage sludge and melamine for peroxymonosulfate activation: N-functionality and catalytic mechanisms. Sci Total Environ 744:140862. https://doi.org/10.1016/j.scitotenv.2020.140862

    Article  CAS  PubMed  Google Scholar 

  74. Guo S, Gao Y, Wang Y et al (2019) Urea/ZnCl2 in situ hydrothermal carbonization of Camellia sinensis waste to prepare N-doped biochar for heavy metal removal. Environ Sci Pollut Res 26:30365–30373. https://doi.org/10.1007/s11356-019-06194-8

    Article  CAS  Google Scholar 

  75. Hosseini-Monfared H, Mohammadi Y, Montazeri R et al (2021) Effect of biochar on the photocatalytic activity of nitrogen-doped titanium dioxide nanocomposite in the removal of aqueous organic pollutants under visible light illumination. Nanochem Res 6:79–93

    CAS  Google Scholar 

  76. Hou J, Jiang T, Wei R et al (2019) Ultrathin-layer structure of BiOI microspheres decorated on N-doped biochar with efficient photocatalytic activity. Front Chem. https://doi.org/10.3389/fchem.2019.00378

    Article  PubMed  PubMed Central  Google Scholar 

  77. Lai M, Li J, Li H et al (2023) N, S-codoped biochar outperformed N-doped biochar on co-activation of H2O2 with trace dissolved Fe(III) for enhanced oxidation of organic pollutants. Environ Pollut 334:122208

    Article  CAS  PubMed  Google Scholar 

  78. Lyu H, Xia S, Tang J et al (2020) Thiol-modified biochar synthesized by a facile ball-milling method for enhanced sorption of inorganic Hg2+ and organic CH3Hg+. J Hazard Mater 384:121357. https://doi.org/10.1016/j.jhazmat.2019.121357

    Article  CAS  PubMed  Google Scholar 

  79. Leng L, Liu R, Xu S et al (2022) An overview of sulfur-functional groups in biochar from pyrolysis of biomass. J Environ Chem Eng 10:107185. https://doi.org/10.1016/j.jece.2022.107185

    Article  CAS  Google Scholar 

  80. Zhang Y, Zhao J (2022) Comparison of different S-doped biochar materials to activate peroxymonosulfate for efficient degradation of antibiotics. Chemosphere 308:136442. https://doi.org/10.1016/j.chemosphere.2022.136442

    Article  CAS  PubMed  Google Scholar 

  81. Pan G, Wei J, Xu M et al (2023) Insight into boron-doped biochar as efficient metal-free catalyst for peroxymonosulfate activation: Important role of –O–B–O– moieties. J Hazard Mater 445:130479. https://doi.org/10.1016/j.jhazmat.2022.130479

    Article  CAS  PubMed  Google Scholar 

  82. Su Z, Jin K, Wu J et al (2022) Phosphorus doped biochar as a deoxygenation and denitrogenation catalyst for ex-situ upgrading of vapors from microwave-assisted co-pyrolysis of microalgae and waste cooking oil. J Anal Appl Pyrol 164:105538. https://doi.org/10.1016/j.jaap.2022.105538

    Article  CAS  Google Scholar 

  83. Zhu D, Shao J, Li Z et al (2021) Nano nickel embedded in N-doped CNTs-supported porous biochar for adsorption-reduction of hexavalent chromium. J Hazard Mater 416:125693. https://doi.org/10.1016/j.jhazmat.2021.125693

    Article  CAS  PubMed  Google Scholar 

  84. Zhao B, Gong J, Song B et al (2022) Effects of activated carbon, biochar, and carbon nanotubes on the heterogeneous Fenton oxidation catalyzed by pyrite for ciprofloxacin degradation. Chemosphere 308:136427. https://doi.org/10.1016/j.chemosphere.2022.136427

    Article  CAS  PubMed  Google Scholar 

  85. Shan R, Lu L, Gu J et al (2020) Photocatalytic degradation of methyl orange by Ag/TiO2/biochar composite catalysts in aqueous solutions. Mater Sci Semicond Process 114:105088. https://doi.org/10.1016/j.mssp.2020.105088

    Article  CAS  Google Scholar 

  86. Gonçalves NPF, Lourenço MAO, Baleuri SR et al (2022) Biochar waste-based ZnO materials as highly efficient photocatalysts for water treatment. J Environ Chem Eng 10:107256. https://doi.org/10.1016/j.jece.2022.107256

    Article  CAS  Google Scholar 

  87. Ghogia AC, Romero Millán LM, White CE, Nzihou A (2023) Synthesis and growth of green graphene from biochar revealed by magnetic properties of iron catalyst. Chemsuschem 16:e202201864. https://doi.org/10.1002/cssc.202201864

    Article  CAS  PubMed  Google Scholar 

  88. Luo K, Yang Q, Pang Y et al (2019) Unveiling the mechanism of biochar-activated hydrogen peroxide on the degradation of ciprofloxacin. Chem Eng J 374:520–530. https://doi.org/10.1016/j.cej.2019.05.204

    Article  CAS  Google Scholar 

  89. Lu L, Shan R, Shi Y et al (2019) A novel TiO2/biochar composite catalysts for photocatalytic degradation of methyl orange. Chemosphere 222:391–398. https://doi.org/10.1016/j.chemosphere.2019.01.132

    Article  CAS  PubMed  Google Scholar 

  90. Cai H, Zhang D, Ma X, Ma Z (2022) A novel ZnO/biochar composite catalysts for visible light degradation of metronidazole. Sep Purif Technol 288:120633. https://doi.org/10.1016/j.seppur.2022.120633

    Article  CAS  Google Scholar 

  91. Chen D, Rao L, Jin B, Jin X, Liu G, Huang Z, Cao K, Chen F, Huang Q (2024) Biochar-mediated release of CO2 from monoethanolamine/H2O solution with low energy requirement over ZrO2/SiO2/biochar ternary catalysts. J Clean Prod 439:140795. https://doi.org/10.1016/j.jclepro.2024.140795

    Article  CAS  Google Scholar 

  92. Kang F, Shi C, Li W et al (2022) Honeycomb like CdS/sulphur-modified biochar composites with enhanced adsorption-photocatalytic capacity for effective removal of rhodamine B. J Environ Chem Eng 10:106942. https://doi.org/10.1016/j.jece.2021.106942

    Article  CAS  Google Scholar 

  93. Buu TT, Hai ND, Cong CQ et al (2024) A case study of different bismuth oxyhalides BiOX (X = F, Cl, Br, and I)/biochar-derived rice husk@graphitic carbon nitride for the robustness of H2O2 photoproduction and antibiotic photodegradation. J Water Process Eng 57:104558. https://doi.org/10.1016/j.jwpe.2023.104558

    Article  Google Scholar 

  94. Rani M, Keshu A, Shanker U (2023) Green synthesis of a biochar-based iron oxide catalyst for efficient degradation of pesticides: kinetics and photoactivity. Chem Sel 8:e202300270. https://doi.org/10.1002/slct.202300270

    Article  CAS  Google Scholar 

  95. Oh S, Son J, Chiu PC (2013) Biochar-mediated reductive transformation of nitro herbicides and explosives. Environ Toxicol Chem 32:501–508

    Article  CAS  PubMed  Google Scholar 

  96. Ai J, Lu C, van den Berg FWJ et al (2021) Biochar catalyzed dechlorination—which biochar properties matter? J Hazard Mater 406:124724. https://doi.org/10.1016/j.jhazmat.2020.124724

    Article  CAS  PubMed  Google Scholar 

  97. Li Z, Sun Y, Yang Y et al (2020) Comparing biochar- and bentonite-supported Fe-based catalysts for selective degradation of antibiotics: mechanisms and pathway. Environ Res 183:109156. https://doi.org/10.1016/j.envres.2020.109156

    Article  CAS  PubMed  Google Scholar 

  98. Dong J, Li G, Gao J et al (2022) Catalytic degradation of brominated flame retardants in the environment: new techniques and research highlights. Sci Total Environ 848:157695. https://doi.org/10.1016/j.scitotenv.2022.157695

    Article  CAS  PubMed  Google Scholar 

  99. Valizadeh S, Lee SS, Baek K et al (2021) Bioremediation strategies with biochar for polychlorinated biphenyls (PCBs)-contaminated soils: a review. Environ Res 200:111757. https://doi.org/10.1016/j.envres.2021.111757

    Article  CAS  PubMed  Google Scholar 

  100. Razmi R, Ramavandi B, Ardjmand M, Heydarinasab A (2019) Efficient phenol removal from petrochemical wastewater using biochar-La/ultrasonic/persulphate system: characteristics, reusability, and kinetic study. Environ Technol 40:822–834. https://doi.org/10.1080/09593330.2017.1408694

    Article  CAS  PubMed  Google Scholar 

  101. Rombolà AG, Meredith W, Snape CE et al (2015) Fate of soil organic carbon and polycyclic aromatic hydrocarbons in a vineyard soil treated with biochar. Environ Sci Technol 49:11037–11044. https://doi.org/10.1021/acs.est.5b02562

    Article  CAS  PubMed  Google Scholar 

  102. Srivatsav P, Bhargav BS, Shanmugasundaram V et al (2020) Biochar as an eco-friendly and economical adsorbent for the removal of colorants (dyes) from aqueous environment: a review. Water 12:3561. https://doi.org/10.3390/w12123561

    Article  CAS  Google Scholar 

  103. Zhang H, Tang L, Wang J et al (2020) Enhanced surface activation process of persulfate by modified bagasse biochar for degradation of phenol in water and soil: active sites and electron transfer mechanism. Colloids Surf A 599:124904. https://doi.org/10.1016/j.colsurfa.2020.124904

    Article  CAS  Google Scholar 

  104. Vieira RAL, Pickler TB, Segato TCM et al (2022) Biochar from fungiculture waste for adsorption of endocrine disruptors in water. Sci Rep 12:6507. https://doi.org/10.1038/s41598-022-10165-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Ni N, Wang F, Song Y et al (2018) Mechanisms of biochar reducing the bioaccumulation of PAHs in rice from soil: degradation stimulation vs immobilization. Chemosphere 196:288–296. https://doi.org/10.1016/j.chemosphere.2017.12.192

    Article  CAS  PubMed  Google Scholar 

  106. Fang W, Wang Q, Han D, Liu P, Huang B, Yan D, Ouyang C, Li Y, Cao A (2016) The effects and mode of action of biochar on the degradation of methyl isothiocyanate in soil. Sci Total Environ 565:339–345. https://doi.org/10.1016/j.scitotenv.2016.04.166

    Article  CAS  PubMed  Google Scholar 

  107. Wu J, Yi Y, Li Y et al (2016) Excellently reactive Ni/Fe bimetallic catalyst supported by biochar for the remediation of decabromodiphenyl contaminated soil: reactivity, mechanism, pathways and reducing secondary risks. J Hazard Mater 320:341–349. https://doi.org/10.1016/j.jhazmat.2016.08.049

    Article  CAS  PubMed  Google Scholar 

  108. Chen Q, Rao P, Cheng Z et al (2019) Novel soil remediation technology for simultaneous organic pollutant catalytic degradation and nitrogen supplementation. Chem Eng J 370:27–36. https://doi.org/10.1016/j.cej.2019.03.179

    Article  CAS  Google Scholar 

  109. Li X, Xu J, Yang Z (2022) Efficient oriented interfacial oxidation of petroleum hydrocarbons by functionalized Fe/N co-doped biochar-mediated heterogeneous fenton for heavily contaminated soil remediation. Chem Eng J 450:138466. https://doi.org/10.1016/j.cej.2022.138466

    Article  CAS  Google Scholar 

  110. Wang X, Huang P, Zhang P et al (2024) Incorporation of N-doped biochar into submicron zero-valent iron for efficient peroxydisulfate activation in soil remediation: performance and mechanism. Chem Eng J 482:148832. https://doi.org/10.1016/j.cej.2024.148832

    Article  CAS  Google Scholar 

  111. Wen Y, Liu L, He D et al (2024) Highly graphitized biochar as nonmetallic catalyst to activate peroxymonosulfate for persistent quinclorac removal in soil through both free and non-free radical pathways. Chem Eng J 480:148082. https://doi.org/10.1016/j.cej.2023.148082

    Article  CAS  Google Scholar 

  112. Masud MAA, Annamalai S, Shin WS (2023) Remediation of ciprofloxacin in soil using peroxymonosulfate activated by ball-milled seaweed kelp biochar: performance, mechanism, and phytotoxicity. Chem Eng J 465:142908. https://doi.org/10.1016/j.cej.2023.142908

    Article  CAS  Google Scholar 

  113. Dong C-D, Chen C-W, Kao C-M et al (2018) Wood-biochar-supported magnetite nanoparticles for remediation of pah-contaminated estuary sediment. Catalysts 8:73. https://doi.org/10.3390/catal8020073

    Article  CAS  Google Scholar 

  114. Zhang X, Zhang X, Zhao S et al (2022) Sulfurized bimetallic biochar as adsorbent and catalyst for selective co-removal of cadmium and PAHs from soil washing effluents. Environ Pollut 314:120333. https://doi.org/10.1016/j.envpol.2022.120333

    Article  CAS  PubMed  Google Scholar 

  115. Liu X, Yang L, Zhao H, Wang W (2020) Pyrolytic production of zerovalent iron nanoparticles supported on rice husk-derived biochar: simple, in situ synthesis and use for remediation of Cr(VI)-polluted soils. Sci Total Environ 708:134479. https://doi.org/10.1016/j.scitotenv.2019.134479

    Article  CAS  PubMed  Google Scholar 

  116. Ahmad M, Ok YS, Kim B-Y et al (2016) Impact of soybean stover- and pine needle-derived biochars on Pb and as mobility, microbial community, and carbon stability in a contaminated agricultural soil. J Environ Manage 166:131–139. https://doi.org/10.1016/j.jenvman.2015.10.006

    Article  CAS  PubMed  Google Scholar 

  117. Warnock DD, Lehmann J, Kuyper TW, Rillig MC (2007) Mycorrhizal responses to biochar in soil-concepts and mechanisms. Plant Soil 300:9–20. https://doi.org/10.1007/s11104-007-9391-5

    Article  CAS  Google Scholar 

  118. Ye J, Joseph SD, Ji M et al (2017) Chemolithotrophic processes in the bacterial communities on the surface of mineral-enriched biochars. ISME J 11:1087–1101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Farrell M, Kuhn TK, Macdonald LM et al (2013) Microbial utilisation of biochar-derived carbon. Sci Total Environ 465:288–297. https://doi.org/10.1016/j.scitotenv.2013.03.090

    Article  CAS  PubMed  Google Scholar 

  120. Lehmann J, Rillig MC, Thies J et al (2011) Biochar effects on soil biota—a review. Soil Biol Biochem 43:1812–1836. https://doi.org/10.1016/j.soilbio.2011.04.022

    Article  CAS  Google Scholar 

  121. Hawthorne I, Johnson MS, Jassal RS et al (2017) Application of biochar and nitrogen influences fluxes of CO2, CH4 and N2O in a forest soil. J Environ Manage 192:203–214. https://doi.org/10.1016/j.jenvman.2016.12.066

    Article  CAS  PubMed  Google Scholar 

  122. Kirchman DL (2018) Processes in microbial ecology. Oxford University Press, Oxford

    Book  Google Scholar 

  123. Wang X, Song D, Liang G et al (2015) Maize biochar addition rate influences soil enzyme activity and microbial community composition in a fluvo-aquic soil. Appl Soil Ecol 96:265–272. https://doi.org/10.1016/j.apsoil.2015.08.018

    Article  Google Scholar 

  124. Paz-Ferreiro J, Fu S (2016) Biological indices for soil quality evaluation: perspectives and limitations. Land Degrad Dev 27:14–25. https://doi.org/10.1002/ldr.2262

    Article  Google Scholar 

  125. Nie C, Yang X, Niazi NK et al (2018) Impact of sugarcane bagasse-derived biochar on heavy metal availability and microbial activity: a field study. Chemosphere 200:274–282. https://doi.org/10.1016/j.chemosphere.2018.02.134

    Article  CAS  PubMed  Google Scholar 

  126. Beesley L, Moreno-Jiménez E, Gomez-Eyles JL (2010) Effects of biochar and greenwaste compost amendments on mobility, bioavailability and toxicity of inorganic and organic contaminants in a multi-element polluted soil. Environ Pollut 158:2282–2287. https://doi.org/10.1016/j.envpol.2010.02.003

    Article  CAS  PubMed  Google Scholar 

  127. Mandal S, Sarkar B, Bolan N et al (2017) Enhancement of chromate reduction in soils by surface modified biochar. J Environ Manag 186:277–284. https://doi.org/10.1016/j.jenvman.2016.05.034

    Article  CAS  Google Scholar 

  128. Nannipieri P, Ascher J, Ceccherini MT et al (2003) Microbial diversity and soil functions. Eur J Soil Sci 54:655–670. https://doi.org/10.1046/j.1351-0754.2003.0556.x

    Article  Google Scholar 

  129. Cao X, Ma L, Liang Y et al (2011) Simultaneous immobilization of lead and atrazine in contaminated soils using dairy-manure biochar. Environ Sci Technol 45:4884–4889

    Article  CAS  PubMed  Google Scholar 

  130. Chen Z, Fang Y, Xu Y, Chen B (2012) Adsorption of Pb2+ by rice straw derived-biochar and its influential factors. Acta Sci Circum 32:769–776

    CAS  Google Scholar 

  131. Shaaban M, Van Zwieten L, Bashir S et al (2018) A concise review of biochar application to agricultural soils to improve soil conditions and fight pollution. J Environ Manag 228:429–440. https://doi.org/10.1016/j.jenvman.2018.09.006

    Article  CAS  Google Scholar 

  132. Tomczyk A, Sokołowska Z, Boguta P (2020) Biochar physicochemical properties: pyrolysis temperature and feedstock kind effects. Rev Environ Sci Bio/Technol 19:191–215

    Article  CAS  Google Scholar 

  133. Yuan P, Wang J, Pan Y et al (2019) Review of biochar for the management of contaminated soil: preparation, application and prospect. Sci Total Environ 659:473–490. https://doi.org/10.1016/j.scitotenv.2018.12.400

    Article  CAS  PubMed  Google Scholar 

  134. Laird DA, Fleming P, Davis DD et al (2010) Impact of biochar amendments on the quality of a typical midwestern agricultural soil. Geoderma 158:443–449. https://doi.org/10.1016/j.geoderma.2010.05.013

    Article  CAS  Google Scholar 

  135. Chacón FJ, Cayuela ML, Sánchez-Monedero MA (2022) Paracetamol degradation pathways in soil after biochar addition. Environ Pollut 307:119546. https://doi.org/10.1016/j.envpol.2022.119546

    Article  CAS  PubMed  Google Scholar 

  136. Liu J, Jiang S, Chen D et al (2020) Activation of persulfate with biochar for degradation of bisphenol A in soil. Chem Eng J 381:122637. https://doi.org/10.1016/j.cej.2019.122637

    Article  CAS  Google Scholar 

  137. Wang H, Guo W, Yin R et al (2019) Biochar-induced Fe(III) reduction for persulfate activation in sulfamethoxazole degradation: Insight into the electron transfer, radical oxidation and degradation pathways. Chem Eng J 362:561–569. https://doi.org/10.1016/j.cej.2019.01.053

    Article  CAS  Google Scholar 

  138. Zhang P, Sun H, Min L, Ren C (2018) Biochars change the sorption and degradation of thiacloprid in soil: insights into chemical and biological mechanisms. Environ Pollut 236:158–167. https://doi.org/10.1016/j.envpol.2018.01.030

    Article  CAS  PubMed  Google Scholar 

  139. Deng F, Dou R, Sun J et al (2021) Phenanthrene degradation in soil using biochar hybrid modified bio-microcapsules: determining the mechanism of action via comparative metagenomic analysis. Sci Total Environ 775:145798. https://doi.org/10.1016/j.scitotenv.2021.145798

    Article  CAS  PubMed  Google Scholar 

  140. Liu L, Chen P, Sun M et al (2015) Effect of biochar amendment on PAH dissipation and indigenous degradation bacteria in contaminated soil. J Soils Sediments 15:313–322. https://doi.org/10.1007/s11368-014-1006-1

    Article  CAS  Google Scholar 

  141. Zhao Y, Song M, Cao Q et al (2020) The superoxide radicals’ production via persulfate activated with CuFe2O4@Biochar composites to promote the redox pairs cycling for efficient degradation of o-nitrochlorobenzene in soil. J Hazard Mater 400:122887. https://doi.org/10.1016/j.jhazmat.2020.122887

    Article  CAS  PubMed  Google Scholar 

  142. He L, Fan S, Müller K et al (2018) Comparative analysis biochar and compost-induced degradation of di-(2-ethylhexyl) phthalate in soils. Sci Total Environ 625:987–993. https://doi.org/10.1016/j.scitotenv.2018.01.002

    Article  CAS  PubMed  Google Scholar 

  143. Ren X, Zhang P, Zhao L, Sun H (2016) Sorption and degradation of carbaryl in soils amended with biochars: influence of biochar type and content. Environ Sci Pollut Res 23:2724–2734. https://doi.org/10.1007/s11356-015-5518-z

    Article  CAS  Google Scholar 

  144. Kumar A, Shalini SG et al (2017) Facile hetero-assembly of superparamagnetic Fe3O4/BiVO4 stacked on biochar for solar photo-degradation of methyl paraben and pesticide removal from soil. J Photochem Photobiol A 337:118–131. https://doi.org/10.1016/j.jphotochem.2017.01.010

    Article  CAS  Google Scholar 

  145. Sahoo SS, Vijay VK, Chandra R, Kumar H (2021) Production and characterization of biochar produced from slow pyrolysis of pigeon pea stalk and bamboo. Clean Eng Technol 3:100101. https://doi.org/10.1016/j.clet.2021.100101

    Article  Google Scholar 

  146. Selvarajoo A, Wong YL, Khoo KS et al (2022) Biochar production via pyrolysis of citrus peel fruit waste as a potential usage as solid biofuel. Chemosphere 294:133671. https://doi.org/10.1016/j.chemosphere.2022.133671

    Article  CAS  PubMed  Google Scholar 

  147. Zhang H, Tu Y-J, Duan Y-P et al (2020) Production of biochar from waste sludge/leaf for fast and efficient removal of diclofenac. J Mol Liq 299:112193. https://doi.org/10.1016/j.molliq.2019.112193

    Article  CAS  Google Scholar 

  148. Zhang Q, Zhang D, Lu W et al (2020) Production of high-density polyethylene biocomposites from rice husk biochar: effects of varying pyrolysis temperature. Sci Total Environ 738:139910. https://doi.org/10.1016/j.scitotenv.2020.139910

    Article  CAS  PubMed  Google Scholar 

  149. Castilla-Caballero D, Barraza-Burgos J, Gunasekaran S et al (2020) Experimental data on the production and characterization of biochars derived from coconut-shell wastes obtained from the Colombian Pacific Coast at low temperature pyrolysis. Data Brief 28:104855. https://doi.org/10.1016/j.dib.2019.104855

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the “Pioneer” and “Leading Goose” R&D Program of Zhejiang (Grant No. 2022C02022) and Ningbo Science and Technique Plan Project (Grant No. 2022S110).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Fu.

Ethics declarations

Competing Interests

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, M., Zhou, Q., Fu, L. et al. Application of Biochar-Based Catalysts for Soil and Water Pollution Control. Top Catal (2024). https://doi.org/10.1007/s11244-024-01962-4

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11244-024-01962-4

Keywords

Navigation