Skip to main content
Log in

Enhanced Aerobic Naphthalene Degradation Utilizing Indigenous Microbial Flora as a Biocatalyst in Oil-Contaminated Wastewater

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Bacteria indigenous to oil-contaminated water exhibited diverse metabolic capabilities in degrading various aromatic and monoaromatic hydrocarbons. Out of the 28 bacterial strains isolated from the wastewater, each was cultivated with at least one hydrocarbon, including kerosene, naphthalene, toluene, diesel, or aniline. Among these strains, Pseudomonas putida AD-128 emerged as one of the most effective polyaromatic hydrocarbon (PAH) degraders. Following a 6-day treatment period, strain P. putida AD-128 demonstrated proficiency in degrading various PAHs, including naphthalene, phenanthrene, and fluorine. After 6 days of incubation at 20 °C, the degradation of Naphthalene (NAP) notably increased. Gas Chromatography Mass Spectrometry analysis identified the degraded compounds, including pyruvic acid, salicylaldehyde, D-gluconic acid, and catechol. Optimal NAP degradation was observed at 20 °C and pH 6.0, with increased agitation speed correlating with enhanced bacterial growth and heightened degradation, particularly evident after 6 days at 20 °C. Peptone emerged as the most effective among the four nitrogen supplements (ammonium sulfate, potassium nitrate, beef extract, and peptone), significantly reducing residual naphthalene in the medium. The isolated indigenous bacterium, P. putida AD-128, exhibits robust capabilities in degrading PAHs under optimized conditions, making it a valuable asset for environmental management initiatives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Humbert K, Debret M, Morin C, Cosme J, Portet-Koltalo F (2022) Direct thermal desorption-gas chromatography-tandem mass spectrometry versus microwave assisted extraction and GC-MS for the simultaneous analysis of polyaromatic hydrocarbons (PAHs, PCBs) from sediments. Talanta 250:123735

    Article  CAS  PubMed  Google Scholar 

  2. Ghahari S, Ghahari S, Ghahari S, Nematzadeh G, Sarma H (2021) Integrated remediation approaches for selected pharmaceutical and personal care products in urban soils for a sustainable future. Energy Ecol Environ. https://doi.org/10.1007/s40974-021-00218-1

    Article  Google Scholar 

  3. Rameshkumar K, Ananthi V, Arun A, Prema P, Veeramanikandan V, Nguyen V-H, Balaji P (2023) Trianthema portulacastrum leaf extract mediated synthesis of silver nanoparticles and elucidation of their larvicidal and antibacterial activities. Mater Today Commun. https://doi.org/10.1016/j.mtcomm.2023.105980

    Article  Google Scholar 

  4. Gokul T, Kumar KR, Veeramanikandan V, Arun A, Balaji P, Faggio C (2023) Impact of particulate pollution on aquatic invertebrates. Environ Toxicol Pharmacol 100:104146

    Article  CAS  PubMed  Google Scholar 

  5. Gokul T, Kumar KR, Prema P, Arun A, Balaji P, Faggio C (2023) Particulate pollution and its toxicity to fish: an overview. Comp Biochem Physiol Part C Toxicol Pharmacol. https://doi.org/10.1016/j.cbpc.2023.109646

    Article  Google Scholar 

  6. Kulanthaisamy M, Rao RGR, Sivaprakash G, Swetha TA, Bora A, Balaji P, Panneerselvan L, Arun A (2023) Bioplastics from microbial and agricultural biomass. In: Smirnova A, Numan-Al-Mobin A, Inamuddin (eds) Green sustainable process for chemical and environmental engineering and science. Elsevier, Amsterdam, pp 413–438

    Chapter  Google Scholar 

  7. Pothiraj C, Gokul TA, Kumar KR, Ramasubramanian A, Palanichamy A, Venkatachalam K, Pastorino P, Barcelò D, Balaji P, Faggio C (2023) Vulnerability of microplastics on marine environment: a review. Ecol Indicators 155:111058

    Article  CAS  Google Scholar 

  8. Lahiri D, Nag M, Dey A, Sarkar T, Joshi S, Pandit S, Das AP, Pati S, Pattanaik S, Tilak VK (2022) Biofilm mediated degradation of petroleum products. Geomicrobiol J 39(3–5):389–398

    Article  CAS  Google Scholar 

  9. Parthipan P, Cheng L, Rajasekar A, Angaiah S (2021) Microbial surfactants are next-generation biomolecules for sustainable remediation of polyaromatic hydrocarbons. In: Sarma H, Prasad MNV (eds) Biosurfactants for a sustainable future: production and applications in the environment and biomedicine. Wiley, Hoboken, pp 139–158

    Chapter  Google Scholar 

  10. Patowary R, Patowary K, Kalita MC, Deka S, Borah JM, Joshi SJ, Zhang M, Peng W, Sharma G, Rinklebe J (2022) Biodegradation of hazardous naphthalene and cleaner production of rhamnolipids—green approaches of pollution mitigation. Environ Res 209:112875

    Article  CAS  PubMed  Google Scholar 

  11. Parthipan P, Cheng L, Dhandapani P, Elumalai P, Huang M, Rajasekar A (2022) Impact of biosurfactant and iron nanoparticles on biodegradation of polyaromatic hydrocarbons (PAHs). Environ Pollut 306:119384

    Article  CAS  PubMed  Google Scholar 

  12. Gu M, Fang W, Li X, Yang W, Waigi MG, Kengara FO, Wu S, Han C, Zhang Y (2022) Up-regulation of ribosomal and carbon metabolism proteins enhanced pyrene biodegradation in fulvic acid-induced biofilm system. Environ Pollut 294:118602

    Article  CAS  PubMed  Google Scholar 

  13. Saeed M, Ilyas N, Bibi F, Jayachandran K, Dattamudi S, Elgorban AM (2022) Biodegradation of PAHs by Bacillus marsiflavi, genome analysis and its plant growth promoting potential. Environ Pollut 292:118343

    Article  CAS  PubMed  Google Scholar 

  14. Ahmad R, Amir SH, Khan SA (2020) Naphthalene mothballs poisoning leading to intravascular hemolysis: a case report. J Emerg Med 58(1):e1–e3

    Article  PubMed  Google Scholar 

  15. Sun K, Song Y, He F, Jing M, Tang J, Liu R (2021) A review of human and animals exposure to polycyclic aromatic hydrocarbons: health risk and adverse effects, photo-induced toxicity and regulating effect of microplastics. Sci Total Environ 773:145403

    Article  CAS  PubMed  Google Scholar 

  16. Goveas LC, Nayak S, Selvaraj R (2022) Concise review on bacterial degradation of petroleum hydrocarbons: emphasis on Indian marine environment. Biores Technol Reports 19:101136

    Article  CAS  Google Scholar 

  17. Liu A, Li X, Hao Z, Cao J, Li H, Sun M, Zhang Z, Liang R, Zhang H (2022) Alterations of DNA methylation and mRNA levels of CYP1A1, GSTP1, and GSTM1 in human bronchial epithelial cells induced by benzo [a] pyrene. Toxicol Ind Health 38(3):127–138

    Article  PubMed  Google Scholar 

  18. Zhao N, Wu W, Cui S, Li H, Feng Y, Guo L, Zhang Y, Wang S (2022) Effects of Benzo [a] pyrene-DNA adducts, dietary vitamins, folate, and carotene intakes on preterm birth: a nested case–control study from the birth cohort in China. Environ Health 21(1):48

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Premnath N, Mohanrasu K, Rao RGR, Dinesh G, Prakash GS, Ananthi V, Ponnuchamy K, Muthusamy G, Arun A (2021) A crucial review on polycyclic aromatic hydrocarbons-environmental occurrence and strategies for microbial degradation. Chemosphere 280:130608

    Article  CAS  PubMed  Google Scholar 

  20. Liu Y, Zhang J, Yang S, Yang H (2023) Biodegradation and removal of heavy oil using Pseudomonas sp. and Bacillus spp. isolated from oily sludge and wastewater in Xinjiang Oilfield, China. J Environ Chem Eng 11(3):110123

    Article  CAS  Google Scholar 

  21. Inobeme A, Adetunji CO, Mathew JT, Ajai AI, Mann A, Inobeme J, Oyedolapo B, Adekoya MA, Onyeaku S (2023) Diversity, biodegradation and bioremediation of polycyclic aromatic hydrocarbons. In: Shah Maulin P (ed) Microbial technologies in industrial wastewater treatment. Springer Nature, Singapore, pp 31–50

    Chapter  Google Scholar 

  22. Radhakrishnan A, Balaganesh P, Vasudevan M, Natarajan N, Chauhan A, Arora J, Ranjan A, Rajput VD, Sushkova S, Minkina T (2023) Bioremediation of hydrocarbon pollutants: Recent promising sustainable approaches, scope, and challenges. Sustainability 15(7):5847

    Article  CAS  Google Scholar 

  23. Ramasubramanian A, Selvaraj V, Chinnathambi P, Hussain S, Ali D, Kumar G, Balaji P, Sagadevan S (2023) Enhanced photocatalytic degradation of methylene blue from aqueous solution using green synthesized ZnO nanoparticles. Biomass Conv Bioref 13(18):17271–17282

    Article  CAS  Google Scholar 

  24. Ramya S, Barathinivas A, Jayakumararaj R, Pothiraj C, Ali D, Piccione G, Multisanti CR, Balaji P, Faggio C (2023) Ecotoxicological insights: Effects of pesticides on ionic metabolism regulation in freshwater catfish. Mystus keletius Aquat Toxicol 265:106764

    Article  CAS  PubMed  Google Scholar 

  25. Prema P, Nguyen V-H, Venkatachalam K, Murugan J, Ali HM, Salem MZ, Ravindran B, Balaji P (2022) Hexavalent chromium removal from aqueous solutions using biogenic iron nanoparticles: kinetics and equilibrium study. Environ Res 205:112477

    Article  CAS  PubMed  Google Scholar 

  26. Huang Y, Zhang W, Pang S, Chen J, Bhatt P, Mishra S, Chen S (2021) Insights into the microbial degradation and catalytic mechanisms of chlorpyrifos. Environ Res 194:110660

    Article  CAS  PubMed  Google Scholar 

  27. Zhang B, Yn Li, Fei Y, Cheng Y (2021) Novel pathway for vanadium (V) bio-detoxification by gram-positive Lactococcus raffinolactis. Environ Sci Technol 55(3):2121–2131

    Article  CAS  PubMed  Google Scholar 

  28. Viesser JA, Sugai-Guerios MH, Malucelli LC, Pincerati MR, Karp SG, Maranho LT (2020) Petroleum-tolerant rhizospheric bacteria: isolation, characterization and bioremediation potential. Sci Rep 10(1):2060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Al-Marri S, Eldos H, Ashfaq M, Saeed S, Skariah S, Varghese L, Mohamoud Y, Sultan A, Raja M (2023) Isolation, identification, and screening of biosurfactant-producing and hydrocarbon-degrading bacteria from oil and gas industrial waste. Biotechnol Rep. https://doi.org/10.1016/j.btre.2023.e00804

    Article  Google Scholar 

  30. Ghorbannezhad H, Moghimi H, Dastgheib SMM (2022) Biodegradation of high molecular weight hydrocarbons under saline condition by halotolerant Bacillus subtilis and its mixed cultures with Pseudomonas species. Sci Rep 12(1):13227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Imam A, Suman SK, Kanaujia PK, Ray A (2022) Biological machinery for polycyclic aromatic hydrocarbons degradation: a review. Biores Technol 343:126121

    Article  CAS  Google Scholar 

  32. Li L, Liu R, Chen J, Tai P, Bi X, Zou P, Wang Y, Xiao Y (2023) Biotrophic interactions between plant and endophytic bacteria in removal of PAHs and Cd from contaminated soils enhanced by graphene oxide. J Clean Prod 417:137996

    Article  CAS  Google Scholar 

  33. Tato JV, Seijas JA, Vázquez-Tato MP, Meijide F, de Frutos S, Jover A, Fraga F, Soto VH (2021) Introduction to biosurfactants. In: Sarma H, Prasad MNV (eds) Biosurfactants for a sustainable future: production and applications in the environment and biomedicine. Wiley, Hoboken, pp 1–42

    Google Scholar 

  34. Ng YJ, Lim HR, Khoo KS, Chew KW, Chan DJC, Bilal M, Munawaroh HSH, Show PL (2022) Recent advances of biosurfactant for waste and pollution bioremediation: substitutions of petroleum-based surfactants. Environ Res 212:113126

    Article  CAS  PubMed  Google Scholar 

  35. Muthukumar B, Parthipan P, AlSalhi MS, Prabhu NS, Rao TN, Devanesan S, Maruthamuthu MK, Rajasekar A (2022) Characterization of bacterial community in oil-contaminated soil and its biodegradation efficiency of high molecular weight (> C40) hydrocarbon. Chemosphere 289:133168

    Article  CAS  PubMed  Google Scholar 

  36. Gaur VK, Manickam N (2021) Microbial biosurfactants: production and applications in circular bioeconomy. In: Pandey A, Mohan SV, Chang JS, Hallenbeck PC, Larroche C (eds) Biomass, biofuels, biochemicals. Elsevier, Amsterdam, pp 353–378

    Chapter  Google Scholar 

  37. Rejiniemon T, Lekshmi R, Alodaini HA, Hatamleh AA, Sathya R, Kuppusamy P, Al-Dosary MA, Kalaiyarasi M (2022) Biodegradation of naphthalene by biocatalysts isolated from the contaminated environment under optimal conditions. Chemosphere 305:135274

    Article  CAS  PubMed  Google Scholar 

  38. Xie J, Hu W, Pei H, Dun M, Qi F (2008) Detection of amount and activity of living algae in fresh water by dehydrogenase activity (DHA). Environ Monit Assess 146:473–478

    Article  CAS  PubMed  Google Scholar 

  39. Eaton AD, Clesceri LS, Rice EW, Greenberg AE (2005) Standard methods for the examination of water and wastewater. American Public Health Association Press, Washington

    Google Scholar 

  40. Thimmarayan S, Mohan H, Manasa G, Natesan K, Mahendran S, Sathya PM, Oh B-T, Kumar RR, Gandhimadhi RS, Jayaprakash A (2023) Biodegradation of naphthalene—ecofriendly approach for soil pollution mitigation. Environ Res. https://doi.org/10.1016/j.envres.2023.117550

    Article  PubMed  Google Scholar 

  41. Samsu Z, Jeffry FN, Azizan WNANWAR (2020) Isolation and screening of potential biosurfactant-producing bacteria from used engine oil-contaminated soil. Mater Today Proceed 31:A67–A71

    Article  CAS  Google Scholar 

  42. Bhandari R, Harsha Vardhan K, Kumar PS, Gayathri KV (2023) Effective removal of naphthalene from contaminated soil using halotolerant bacterial strains and vermiremediation techniques. Int J Environ Anal Chem 103(4):761–778

    Article  CAS  Google Scholar 

  43. Dutta K, Shityakov S, Das PP, Ghosh C (2017) Enhanced biodegradation of mixed PAHs by mutated naphthalene 1, 2-dioxygenase encoded by Pseudomonas putida strain KD6 isolated from petroleum refinery waste. 3Biotech 7:1–11

    Google Scholar 

  44. Ali M, Song X, Ding D, Wang Q, Zhang Z, Tang Z (2022) Bioremediation of PAHs and heavy metals co-contaminated soils: challenges and enhancement strategies. Environ Pollut 295:118686

    Article  CAS  PubMed  Google Scholar 

  45. Ebadi A, Ghavidel A, Sima NAK, Heydari G, Ghaffari MR (2021) New strategy to increase oil biodegradation efficiency by selecting isolates with diverse functionality and no antagonistic interactions for bacterial consortia. J Environ Chem Eng 9(5):106315

    Article  CAS  Google Scholar 

  46. Balasubramanian B, Soundharrajan I, Al-Dhabi NA, Vijayaraghavan P, Balasubramanian K, Valan Arasu M, Choi KC (2021) Probiotic characteristics of Ligilactobacillus salivarius AS22 isolated from sheep dung and its application in corn-fox tail millet silage. Appl Sci 11(20):9447

    Article  Google Scholar 

  47. Lázaro-Mass S, Gómez-Cornelio S, Castillo-Vidal M, Alvarez-Villagomez CS, Quintana P, De la Rosa-García S (2023) Biodegradation of hydrocarbons from contaminated soils by microbial consortia: a laboratory microcosm study. Electron J Biotechnol 61:24–32

    Article  Google Scholar 

  48. Goveas LC, Selvaraj R, Vinayagam R, Sajankila SP, Pugazhendhi A (2023) Biodegradation of benzo (a) pyrene by Pseudomonas strains, isolated from petroleum refinery effluent: degradation, inhibition kinetics and metabolic pathway. Chemosphere 321:138066

    Article  CAS  PubMed  Google Scholar 

  49. Wang S, Liu M, Wang D, Li S, Yan W (2022) Plasmid pND6-1 enhances the stability and conjugative transfer of co-resident companion plasmid pND6-2 in the naphthalene-degradative Pseudomonas putida strain ND6. Electron J Biotechnol 59:74–82

    Article  CAS  Google Scholar 

  50. Ghosh P, Mukherji S (2020) Degradation of carbazole, fluorene, dibenzothiophene and their mixture by P. aeruginosa RS1 in petroleum refinery wastewater. J Water Process Eng 37:101454

    Article  Google Scholar 

  51. Ghosh P, Mukherji S (2021) Environmental contamination by heterocyclic polynuclear aromatic hydrocarbons and their microbial degradation. Biores Technol 341:125860

    Article  CAS  Google Scholar 

  52. Hossain MF, Akter MA, Sohan MSR, Sultana N, Reza MA, Hoque KMF (2022) Bioremediation potential of hydrocarbon degrading bacteria: isolation, characterization, and assessment. Saudi J Biol Sci 29(1):211–216

    Article  CAS  PubMed  Google Scholar 

  53. Hentati D, Chebbi A, Mahmoudi A, Hadrich F, Cheffi M, Frikha I, Sayadi S, Chamkha M (2021) Biodegradation of hydrocarbons and biosurfactants production by a newly halotolerant Pseudomonas sp. strain isolated from contaminated seawater. Biochem Eng J 166:107861

    Article  CAS  Google Scholar 

  54. Cheptsov V, Belov A, Sotnikov I (2023) Diversity of bacteria cultured from arid soils and sedimentary rocks under conditions of available water deficiency. Eurasian Soil Sci 56(5):535–544

    Article  CAS  Google Scholar 

  55. Kondrasheva K, Umruzokov A, Kalenov S, Merkel AY, Chernyh N, Slobodkin A, Gavrilov S, Davranov K (2023) Calcinating bacteria in extreme ecosystems of the southern aral region. Microbiology 92(3):473–480

    Article  CAS  Google Scholar 

  56. Subramani AK, Rani P, Wang P-H, Chen B-Y, Mohan S, Chang C-T (2019) Performance assessment of the combined treatment for oxytetracycline antibiotics removal by sonocatalysis and degradation using Pseudomonas aeruginosa. J Environ Chem Eng 7(4):103215

    Article  Google Scholar 

  57. Mohan H, Lim J-M, Lee S-W, Cho M, Park Y-J, Seralathan K-K, Oh B-T (2020) Enhanced removal of bisphenol A from contaminated soil by coupling Bacillus subtilis HV-3 with electrochemical system. Chemosphere 249:126083

    Article  CAS  PubMed  Google Scholar 

  58. Tempestti JCM, Mohan H, Sathya PM, Lee S-W, Venkatachalam J, Oh B-T, Seralathan K-K (2023) Detoxification of p-nitrophenol (PNP) using Enterococcus gallinarum JT-02 isolated from animal farm waste sludge. Environ Res 231:116289

    Article  CAS  PubMed  Google Scholar 

  59. Punetha A, Saraswat S, Rai J (2022) An insight on microbial degradation of benzo [a] pyrene: current status and advances in research. World J Microbiol Biotechnol 38(4):61

    Article  CAS  PubMed  Google Scholar 

  60. Vaidya S, Jain K, Madamwar D (2017) Metabolism of pyrene through phthalic acid pathway by enriched bacterial consortium composed of Pseudomonas, Burkholderia, and Rhodococcus (PBR). 3Biotech 7:1–15

    Google Scholar 

  61. Odili U, Ibrahim F, Shaibu-modagbe E, Atta H (2020) Optimization of crude oil biodegradation of fungi isolated from refinery effluent site using response surface methodology. Nigerian J Technol Dev 17(4):257–268

    Article  Google Scholar 

  62. Ishaya S, Usman S, Nweke OD, Adams NH, Umar R, Ilyasu NS, Jagaba AH, Atangwho IJ, Yakasai HM (2023) Degradation of used engine oil by Alcaligenes sp. strain isolated from oil contaminated site: isolation, identification, and optimization of the growth parameters. Case Stud Chem Environ Eng 8:100516

    Article  CAS  Google Scholar 

  63. Sathya PM, Mohan H, Park J-H, Seralathan K-K, Oh B-T (2023) Applied potential assisted biodegradation of amoxicillin (AMX) using bacterial consortium isolated from a waste dump site. Chemosphere 343:140230

    Article  Google Scholar 

  64. Ismail NA, Kasmuri N, Hamzah N, Jaafar J, Mojiri A, Kindaichi T (2023) Influence of pH and concentration on the growth of bacteria-fungus and benzo [a] pyrene degradation. Environ Technol Innov 29:102995

    Article  CAS  Google Scholar 

  65. Muthukumar B, Surya S, Sivakumar K, AlSalhi MS, Rao TN, Devanesan S, Arunkumar P, Rajasekar A (2023) Influence of bioaugmentation in crude oil contaminated soil by Pseudomonas species on the removal of total petroleum hydrocarbon. Chemosphere 310:136826

    Article  CAS  PubMed  Google Scholar 

  66. Tirkey SR, Ram S, Mishra S (2021) Naphthalene degradation studies using Pseudomonas sp. strain SA3 from Alang-Sosiya ship breaking yard, Gujarat. Heliyon. https://doi.org/10.1016/j.heliyon.2021.e06334

    Article  PubMed  PubMed Central  Google Scholar 

  67. Usman S, Yakasai H, Shukor M (2022) Growth optimization of naphthalene-degrading Proteus vulgaris isolated from oil-spill contaminated soil at NNPC depot in Northern Nigeria. J Mater Environ Sci 13:502–514

    CAS  Google Scholar 

Download references

Acknowledgements

The authors extend their appreciation to the Researchers supporting project number (RSP2024R190), King Saud University, Riyadh, Saudi Arabia. The authors express their gratitude for the assistance and collaboration received from the Department of Microbiology at Karpagam Academy of Higher Education in Coimbatore, Tamil Nadu, India, as well as the management of MGR College in Hosur, Tamil Nadu.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ponnuswamy Vijayaraghavan, Van-Huy Nguyen or Paulraj Balaji.

Ethics declarations

Conflicts of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vijayaraghavan, P., Veeramanikandan, V., Pradeep, B.V. et al. Enhanced Aerobic Naphthalene Degradation Utilizing Indigenous Microbial Flora as a Biocatalyst in Oil-Contaminated Wastewater. Top Catal (2024). https://doi.org/10.1007/s11244-024-01953-5

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11244-024-01953-5

Keywords

Navigation